基于L1范数分解的鲁棒端元检测

Alina Zare, P. Gader
{"title":"基于L1范数分解的鲁棒端元检测","authors":"Alina Zare, P. Gader","doi":"10.1109/IGARSS.2010.5653679","DOIUrl":null,"url":null,"abstract":"The results from L1-Endmembers display the algorithm's stability and accuracy with increasing levels of noise. The algorithm was extremely stable in the number of endmembers when compared to the SPICE algorithm and the Virtual Dimensionality methods for estimating the number of endmembers. Furthermore, the results shown for this algorithm were generated with the same parameter set for all of the data sets, from two-dimensional data to 51-dimensional real hyperspectral data. This indicates L1-Endmembers may lack of sensitivity to parameter value settings.","PeriodicalId":406785,"journal":{"name":"2010 IEEE International Geoscience and Remote Sensing Symposium","volume":"33 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2010-07-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"Robust Endmember detection using L1 norm factorization\",\"authors\":\"Alina Zare, P. Gader\",\"doi\":\"10.1109/IGARSS.2010.5653679\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The results from L1-Endmembers display the algorithm's stability and accuracy with increasing levels of noise. The algorithm was extremely stable in the number of endmembers when compared to the SPICE algorithm and the Virtual Dimensionality methods for estimating the number of endmembers. Furthermore, the results shown for this algorithm were generated with the same parameter set for all of the data sets, from two-dimensional data to 51-dimensional real hyperspectral data. This indicates L1-Endmembers may lack of sensitivity to parameter value settings.\",\"PeriodicalId\":406785,\"journal\":{\"name\":\"2010 IEEE International Geoscience and Remote Sensing Symposium\",\"volume\":\"33 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2010-07-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2010 IEEE International Geoscience and Remote Sensing Symposium\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/IGARSS.2010.5653679\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2010 IEEE International Geoscience and Remote Sensing Symposium","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IGARSS.2010.5653679","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

摘要

l1 -端元的结果表明,随着噪声水平的增加,算法的稳定性和准确性也有所提高。与SPICE算法和虚拟维数估计方法相比,该算法在端元数量上非常稳定。此外,从二维数据到51维实际高光谱数据,该算法的结果都是在相同的参数集下生成的。这说明l1 - end成员可能对参数值设置缺乏敏感性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Robust Endmember detection using L1 norm factorization
The results from L1-Endmembers display the algorithm's stability and accuracy with increasing levels of noise. The algorithm was extremely stable in the number of endmembers when compared to the SPICE algorithm and the Virtual Dimensionality methods for estimating the number of endmembers. Furthermore, the results shown for this algorithm were generated with the same parameter set for all of the data sets, from two-dimensional data to 51-dimensional real hyperspectral data. This indicates L1-Endmembers may lack of sensitivity to parameter value settings.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信