草率Python:使用动态分析自动为临时数据处理脚本添加容错

Philip J. Guo
{"title":"草率Python:使用动态分析自动为临时数据处理脚本添加容错","authors":"Philip J. Guo","doi":"10.1145/2002951.2002961","DOIUrl":null,"url":null,"abstract":"Programmers and data analysts get frustrated when their long-running data processing scripts crash without producing results, due to either bugs in their code or inconsistencies in data sources. To alleviate this frustration, we developed a dynamic analysis technique that guarantees scripts will never crash: It converts all uncaught exceptions into special NA (Not Available) objects and continues executing rather than crashing. Thus, imperfect scripts will run to completion and produce partial results and an error log, which is more informative than simply crashing with no results. We implemented our technique as a \"Sloppy\" Python interpreter that automatically adds error tolerance to existing scripts without any programmer effort or run-time slowdown.","PeriodicalId":315305,"journal":{"name":"International Workshop on Dynamic Analysis","volume":"319 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2011-07-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Sloppy Python: using dynamic analysis to automatically add error tolerance to ad-hoc data processing scripts\",\"authors\":\"Philip J. Guo\",\"doi\":\"10.1145/2002951.2002961\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Programmers and data analysts get frustrated when their long-running data processing scripts crash without producing results, due to either bugs in their code or inconsistencies in data sources. To alleviate this frustration, we developed a dynamic analysis technique that guarantees scripts will never crash: It converts all uncaught exceptions into special NA (Not Available) objects and continues executing rather than crashing. Thus, imperfect scripts will run to completion and produce partial results and an error log, which is more informative than simply crashing with no results. We implemented our technique as a \\\"Sloppy\\\" Python interpreter that automatically adds error tolerance to existing scripts without any programmer effort or run-time slowdown.\",\"PeriodicalId\":315305,\"journal\":{\"name\":\"International Workshop on Dynamic Analysis\",\"volume\":\"319 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2011-07-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Workshop on Dynamic Analysis\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/2002951.2002961\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Workshop on Dynamic Analysis","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/2002951.2002961","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

当程序员和数据分析师的长时间运行的数据处理脚本由于代码中的错误或数据源中的不一致而崩溃而没有产生结果时,他们会感到沮丧。为了减轻这种沮丧,我们开发了一种动态分析技术,以保证脚本永远不会崩溃:它将所有未捕获的异常转换为特殊的NA (Not Available)对象,并继续执行而不是崩溃。因此,不完美的脚本将运行到完成,并产生部分结果和错误日志,这比没有结果的简单崩溃更有信息。我们将我们的技术实现为一个“草率的”Python解释器,它可以自动为现有脚本添加容错功能,而不需要程序员付出任何努力或降低运行时速度。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Sloppy Python: using dynamic analysis to automatically add error tolerance to ad-hoc data processing scripts
Programmers and data analysts get frustrated when their long-running data processing scripts crash without producing results, due to either bugs in their code or inconsistencies in data sources. To alleviate this frustration, we developed a dynamic analysis technique that guarantees scripts will never crash: It converts all uncaught exceptions into special NA (Not Available) objects and continues executing rather than crashing. Thus, imperfect scripts will run to completion and produce partial results and an error log, which is more informative than simply crashing with no results. We implemented our technique as a "Sloppy" Python interpreter that automatically adds error tolerance to existing scripts without any programmer effort or run-time slowdown.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信