基于数据挖掘的网格工作流管理框架

Antonio Congiusta, D. Talia, G. Greco, A. Guzzo, G. Manco, L. Pontieri, D. Saccá
{"title":"基于数据挖掘的网格工作流管理框架","authors":"Antonio Congiusta, D. Talia, G. Greco, A. Guzzo, G. Manco, L. Pontieri, D. Saccá","doi":"10.1109/QSIC.2005.2","DOIUrl":null,"url":null,"abstract":"In this paper we investigate on the exploitation of data mining techniques to analyze data coming from the enactment of workflow-based processes in a service-oriented grid infrastructure. The extracted knowledge allows users to better comprehend the behavior of the enacted processes, and can be profitably exploited to provide advanced support to several phases in the life-cycle of workflow processes, including (re-)design, matchmaking, scheduling and performance monitoring. To this purpose, we focus on recent data mining techniques specifically aimed at enabling refined analyzes of workflow executions. Moreover, we introduce a comprehensive system architecture that supports the management of grid workflows by fully taking advantage of such mining techniques.","PeriodicalId":150211,"journal":{"name":"Fifth International Conference on Quality Software (QSIC'05)","volume":"13 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2005-09-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":"{\"title\":\"A data mining-based framework for grid workflow management\",\"authors\":\"Antonio Congiusta, D. Talia, G. Greco, A. Guzzo, G. Manco, L. Pontieri, D. Saccá\",\"doi\":\"10.1109/QSIC.2005.2\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper we investigate on the exploitation of data mining techniques to analyze data coming from the enactment of workflow-based processes in a service-oriented grid infrastructure. The extracted knowledge allows users to better comprehend the behavior of the enacted processes, and can be profitably exploited to provide advanced support to several phases in the life-cycle of workflow processes, including (re-)design, matchmaking, scheduling and performance monitoring. To this purpose, we focus on recent data mining techniques specifically aimed at enabling refined analyzes of workflow executions. Moreover, we introduce a comprehensive system architecture that supports the management of grid workflows by fully taking advantage of such mining techniques.\",\"PeriodicalId\":150211,\"journal\":{\"name\":\"Fifth International Conference on Quality Software (QSIC'05)\",\"volume\":\"13 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2005-09-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"5\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Fifth International Conference on Quality Software (QSIC'05)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/QSIC.2005.2\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Fifth International Conference on Quality Software (QSIC'05)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/QSIC.2005.2","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5

摘要

在本文中,我们研究了在面向服务的网格基础设施中利用数据挖掘技术来分析来自基于工作流的流程的制定的数据。提取的知识允许用户更好地理解已制定流程的行为,并且可以有效地利用这些知识为工作流流程生命周期中的几个阶段提供高级支持,包括(重新)设计、匹配、调度和性能监视。为此,我们将重点关注最近的数据挖掘技术,这些技术专门用于支持工作流执行的精细分析。此外,我们引入了一个全面的系统架构,通过充分利用这种挖掘技术来支持网格工作流的管理。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A data mining-based framework for grid workflow management
In this paper we investigate on the exploitation of data mining techniques to analyze data coming from the enactment of workflow-based processes in a service-oriented grid infrastructure. The extracted knowledge allows users to better comprehend the behavior of the enacted processes, and can be profitably exploited to provide advanced support to several phases in the life-cycle of workflow processes, including (re-)design, matchmaking, scheduling and performance monitoring. To this purpose, we focus on recent data mining techniques specifically aimed at enabling refined analyzes of workflow executions. Moreover, we introduce a comprehensive system architecture that supports the management of grid workflows by fully taking advantage of such mining techniques.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信