重新审视枫糖浆问题:吉布斯抽样的MCMC

T. Donovan, R. Mickey
{"title":"重新审视枫糖浆问题:吉布斯抽样的MCMC","authors":"T. Donovan, R. Mickey","doi":"10.1093/OSO/9780198841296.003.0016","DOIUrl":null,"url":null,"abstract":"This chapter introduces Markov Chain Monte Carlo (MCMC) with Gibbs sampling, revisiting the “Maple Syrup Problem” of Chapter 12, where the goal was to estimate the two parameters of a normal distribution, μ‎ and σ‎. Chapter 12 used the normal-normal conjugate to derive the posterior distribution for the unknown parameter μ‎; the parameter σ‎ was assumed to be known. This chapter uses MCMC with Gibbs sampling to estimate the joint posterior distribution of both μ‎ and σ‎. Gibbs sampling is a special case of the Metropolis–Hastings algorithm. The chapter describes MCMC with Gibbs sampling step by step, which requires (1) computing the posterior distribution of a given parameter, conditional on the value of the other parameter, and (2) drawing a sample from the posterior distribution. In this chapter, Gibbs sampling makes use of the conjugate solutions to decompose the joint posterior distribution into full conditional distributions for each parameter.","PeriodicalId":285230,"journal":{"name":"Bayesian Statistics for Beginners","volume":"145 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-05-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"The Maple Syrup Problem Revisited: MCMC with Gibbs Sampling\",\"authors\":\"T. Donovan, R. Mickey\",\"doi\":\"10.1093/OSO/9780198841296.003.0016\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This chapter introduces Markov Chain Monte Carlo (MCMC) with Gibbs sampling, revisiting the “Maple Syrup Problem” of Chapter 12, where the goal was to estimate the two parameters of a normal distribution, μ‎ and σ‎. Chapter 12 used the normal-normal conjugate to derive the posterior distribution for the unknown parameter μ‎; the parameter σ‎ was assumed to be known. This chapter uses MCMC with Gibbs sampling to estimate the joint posterior distribution of both μ‎ and σ‎. Gibbs sampling is a special case of the Metropolis–Hastings algorithm. The chapter describes MCMC with Gibbs sampling step by step, which requires (1) computing the posterior distribution of a given parameter, conditional on the value of the other parameter, and (2) drawing a sample from the posterior distribution. In this chapter, Gibbs sampling makes use of the conjugate solutions to decompose the joint posterior distribution into full conditional distributions for each parameter.\",\"PeriodicalId\":285230,\"journal\":{\"name\":\"Bayesian Statistics for Beginners\",\"volume\":\"145 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-05-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Bayesian Statistics for Beginners\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1093/OSO/9780198841296.003.0016\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bayesian Statistics for Beginners","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1093/OSO/9780198841296.003.0016","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

本章介绍了使用Gibbs抽样的马尔可夫链蒙特卡罗(MCMC),重温了第12章的“枫糖浆问题”,其中的目标是估计正态分布的两个参数,μ和σ。第12章采用正态-正态共轭法推导了未知参数μ的后验分布;假设参数σ]是已知的。本章采用Gibbs抽样的MCMC方法估计μ和σ的联合后验分布。Gibbs抽样是Metropolis-Hastings算法的一个特例。本章描述了Gibbs逐步抽样的MCMC,它需要(1)计算给定参数的后验分布,以另一个参数的值为条件,(2)从后验分布中抽取样本。在本章中,Gibbs抽样利用共轭解将联合后验分布分解为每个参数的完整条件分布。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
The Maple Syrup Problem Revisited: MCMC with Gibbs Sampling
This chapter introduces Markov Chain Monte Carlo (MCMC) with Gibbs sampling, revisiting the “Maple Syrup Problem” of Chapter 12, where the goal was to estimate the two parameters of a normal distribution, μ‎ and σ‎. Chapter 12 used the normal-normal conjugate to derive the posterior distribution for the unknown parameter μ‎; the parameter σ‎ was assumed to be known. This chapter uses MCMC with Gibbs sampling to estimate the joint posterior distribution of both μ‎ and σ‎. Gibbs sampling is a special case of the Metropolis–Hastings algorithm. The chapter describes MCMC with Gibbs sampling step by step, which requires (1) computing the posterior distribution of a given parameter, conditional on the value of the other parameter, and (2) drawing a sample from the posterior distribution. In this chapter, Gibbs sampling makes use of the conjugate solutions to decompose the joint posterior distribution into full conditional distributions for each parameter.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信