大型内燃机进气冷却和除湿性能评估:gt-power软件模拟

I. C. Campblell, A. Chun, B. M. F. Miotto, J. Donatelli, J. J. Santos, C. Cunha, C. Zabeu
{"title":"大型内燃机进气冷却和除湿性能评估:gt-power软件模拟","authors":"I. C. Campblell, A. Chun, B. M. F. Miotto, J. Donatelli, J. J. Santos, C. Cunha, C. Zabeu","doi":"10.5380/reterm.v20i2.81782","DOIUrl":null,"url":null,"abstract":"Large internal combustion engines (ICEs) performance is limited by knocking phenomenon due to harsh ambient conditions such as hot temperature and excessive humidity. The performance of these engines can be enhanced by cooling and dehumidifying the inlet air on turbocharger upstream under safe operation conditions through a cooling coil heat exchanger, hence, increasing the power output as well as reducing the brake specific fuel consumption and pollutant specific emissions. Analysis have been performed in the GT-POWER software through a 1-D thermodynamic modelling of the Wärtsilä W20V34SG engine, making it possible to verify the influence of cooled and dehumidified ambient air, considering a temperature range from 9.5°C (282.7 K) to 15.5°C (288.7 K), while keeping 1 bar for pressure and relative humidity of 100%. Furthermore, the brake mean effective pressure (BMEP) has been set from 20 to 23.45 bar with a step of 1.15 bar. Such simulations are aimed to find the maximum air temperature at the cooling coil outlet in which the average of maximum cylinder pressures does not exceed the safety limit pressure of 186 bar while maintaining control on the wastegate valve. As a result, it was possible to evaluate that the maximum temperature to be chosen, under the conditions already mentioned, should be lower than 13.8°C (287 K).","PeriodicalId":106768,"journal":{"name":"Revista de Engenharia Térmica","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2021-07-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"PERFORMANCE ASSESSMENT OF A LARGE INTERNAL COMBUSTION ENGINE DUE TO INLET AIR COOLING AND DEHUMIDIFICATION: GT-POWER SOFTWARE SIMULATION\",\"authors\":\"I. C. Campblell, A. Chun, B. M. F. Miotto, J. Donatelli, J. J. Santos, C. Cunha, C. Zabeu\",\"doi\":\"10.5380/reterm.v20i2.81782\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Large internal combustion engines (ICEs) performance is limited by knocking phenomenon due to harsh ambient conditions such as hot temperature and excessive humidity. The performance of these engines can be enhanced by cooling and dehumidifying the inlet air on turbocharger upstream under safe operation conditions through a cooling coil heat exchanger, hence, increasing the power output as well as reducing the brake specific fuel consumption and pollutant specific emissions. Analysis have been performed in the GT-POWER software through a 1-D thermodynamic modelling of the Wärtsilä W20V34SG engine, making it possible to verify the influence of cooled and dehumidified ambient air, considering a temperature range from 9.5°C (282.7 K) to 15.5°C (288.7 K), while keeping 1 bar for pressure and relative humidity of 100%. Furthermore, the brake mean effective pressure (BMEP) has been set from 20 to 23.45 bar with a step of 1.15 bar. Such simulations are aimed to find the maximum air temperature at the cooling coil outlet in which the average of maximum cylinder pressures does not exceed the safety limit pressure of 186 bar while maintaining control on the wastegate valve. As a result, it was possible to evaluate that the maximum temperature to be chosen, under the conditions already mentioned, should be lower than 13.8°C (287 K).\",\"PeriodicalId\":106768,\"journal\":{\"name\":\"Revista de Engenharia Térmica\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-07-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Revista de Engenharia Térmica\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.5380/reterm.v20i2.81782\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Revista de Engenharia Térmica","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5380/reterm.v20i2.81782","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

大型内燃机在温度过高、湿度过大等恶劣环境下会出现爆震现象,影响其性能。这些发动机的性能可以通过冷却盘管热交换器在安全运行条件下对上游涡轮增压器的进气进行冷却和除湿,从而增加功率输出,降低制动油耗和污染物排放。在GT-POWER软件中,通过Wärtsilä W20V34SG发动机的一维热力学建模进行了分析,从而可以验证冷却和除湿的环境空气的影响,考虑温度范围为9.5°C (282.7 K)至15.5°C (288.7 K),同时保持1 bar的压力和100%的相对湿度。此外,制动平均有效压力(BMEP)设定为20 ~ 23.45 bar,步进为1.15 bar。这样的模拟旨在找到冷却盘管出口的最高空气温度,其中最大钢瓶压力的平均值不超过186 bar的安全极限压力,同时保持对废水闸阀的控制。因此,可以评估在上述条件下所选择的最高温度应低于13.8°C (287 K)。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
PERFORMANCE ASSESSMENT OF A LARGE INTERNAL COMBUSTION ENGINE DUE TO INLET AIR COOLING AND DEHUMIDIFICATION: GT-POWER SOFTWARE SIMULATION
Large internal combustion engines (ICEs) performance is limited by knocking phenomenon due to harsh ambient conditions such as hot temperature and excessive humidity. The performance of these engines can be enhanced by cooling and dehumidifying the inlet air on turbocharger upstream under safe operation conditions through a cooling coil heat exchanger, hence, increasing the power output as well as reducing the brake specific fuel consumption and pollutant specific emissions. Analysis have been performed in the GT-POWER software through a 1-D thermodynamic modelling of the Wärtsilä W20V34SG engine, making it possible to verify the influence of cooled and dehumidified ambient air, considering a temperature range from 9.5°C (282.7 K) to 15.5°C (288.7 K), while keeping 1 bar for pressure and relative humidity of 100%. Furthermore, the brake mean effective pressure (BMEP) has been set from 20 to 23.45 bar with a step of 1.15 bar. Such simulations are aimed to find the maximum air temperature at the cooling coil outlet in which the average of maximum cylinder pressures does not exceed the safety limit pressure of 186 bar while maintaining control on the wastegate valve. As a result, it was possible to evaluate that the maximum temperature to be chosen, under the conditions already mentioned, should be lower than 13.8°C (287 K).
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信