基于深度学习的印尼语文本仇恨言论识别:初步研究

Erryan Sazany, I. Budi
{"title":"基于深度学习的印尼语文本仇恨言论识别:初步研究","authors":"Erryan Sazany, I. Budi","doi":"10.1109/ICAITI.2018.8686725","DOIUrl":null,"url":null,"abstract":"This paper presents an implementation of hate speech identification task for text data written in Indonesian language. There are some studies purposed for similar problem, but all of them use classical machine learning approach, whose heavily depends on the feature engineering. Switching the domain of data set means that the feature engineering should be redone. To address this issue, this preliminary research proposes another method based on deep learning approach which needs no feature engineering and is also adaptive to the varying context. Using data sets sourced from Twitter posts, the proposed method gives better result of 94.5% F1-score at a minimum.","PeriodicalId":233598,"journal":{"name":"2018 International Conference on Applied Information Technology and Innovation (ICAITI)","volume":"13 6 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"14","resultStr":"{\"title\":\"Deep Learning-Based Implementation of Hate Speech Identification on Texts in Indonesian: Preliminary Study\",\"authors\":\"Erryan Sazany, I. Budi\",\"doi\":\"10.1109/ICAITI.2018.8686725\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper presents an implementation of hate speech identification task for text data written in Indonesian language. There are some studies purposed for similar problem, but all of them use classical machine learning approach, whose heavily depends on the feature engineering. Switching the domain of data set means that the feature engineering should be redone. To address this issue, this preliminary research proposes another method based on deep learning approach which needs no feature engineering and is also adaptive to the varying context. Using data sets sourced from Twitter posts, the proposed method gives better result of 94.5% F1-score at a minimum.\",\"PeriodicalId\":233598,\"journal\":{\"name\":\"2018 International Conference on Applied Information Technology and Innovation (ICAITI)\",\"volume\":\"13 6 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"14\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2018 International Conference on Applied Information Technology and Innovation (ICAITI)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICAITI.2018.8686725\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 International Conference on Applied Information Technology and Innovation (ICAITI)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICAITI.2018.8686725","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 14

摘要

本文提出了一种针对印尼语文本数据的仇恨言论识别任务的实现。目前已有一些针对类似问题的研究,但都采用了经典的机器学习方法,而这种方法很大程度上依赖于特征工程。数据集领域的切换意味着特征工程需要重新进行。为了解决这一问题,本初步研究提出了另一种基于深度学习的方法,该方法不需要特征工程,也能适应不同的环境。使用来自Twitter帖子的数据集,所提出的方法给出了更好的结果,最低为94.5%的f1分。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Deep Learning-Based Implementation of Hate Speech Identification on Texts in Indonesian: Preliminary Study
This paper presents an implementation of hate speech identification task for text data written in Indonesian language. There are some studies purposed for similar problem, but all of them use classical machine learning approach, whose heavily depends on the feature engineering. Switching the domain of data set means that the feature engineering should be redone. To address this issue, this preliminary research proposes another method based on deep learning approach which needs no feature engineering and is also adaptive to the varying context. Using data sets sourced from Twitter posts, the proposed method gives better result of 94.5% F1-score at a minimum.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信