F. Bustamante, G. Eisenhauer, K. Schwan, Patrick M. Widener
{"title":"高效线格式的高性能计算","authors":"F. Bustamante, G. Eisenhauer, K. Schwan, Patrick M. Widener","doi":"10.1109/SC.2000.10046","DOIUrl":null,"url":null,"abstract":"High performance computing is being increasingly utilized in non-traditional circumstances where it must interoperate with other applications. For example, online visualization is being used to monitor the progress of applications, and real-world sensors are used as inputs to simulations. Whenever these situations arise, there is a question of what communications infrastructure should be used to link the different components. Traditional HPC-style communications systems such as MPI offer relatively high performance, but are poorly suited for developing these less tightly-coupled cooperating applications. Object-based systems and meta-data formats like XML offer substantial plug-and-play flexibility, but with substantially lower performance. We observe that the flexibility and baseline performance of all these systems is strongly determined by their `wire format', or how they represent data for transmission in a heterogeneous environment. We examine the performance implications of different wire formats and present an alternative with significant advantages in terms of both performance and flexibility.","PeriodicalId":228250,"journal":{"name":"ACM/IEEE SC 2000 Conference (SC'00)","volume":"281 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2000-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"105","resultStr":"{\"title\":\"Efficient Wire Formats for High Performance Computing\",\"authors\":\"F. Bustamante, G. Eisenhauer, K. Schwan, Patrick M. Widener\",\"doi\":\"10.1109/SC.2000.10046\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"High performance computing is being increasingly utilized in non-traditional circumstances where it must interoperate with other applications. For example, online visualization is being used to monitor the progress of applications, and real-world sensors are used as inputs to simulations. Whenever these situations arise, there is a question of what communications infrastructure should be used to link the different components. Traditional HPC-style communications systems such as MPI offer relatively high performance, but are poorly suited for developing these less tightly-coupled cooperating applications. Object-based systems and meta-data formats like XML offer substantial plug-and-play flexibility, but with substantially lower performance. We observe that the flexibility and baseline performance of all these systems is strongly determined by their `wire format', or how they represent data for transmission in a heterogeneous environment. We examine the performance implications of different wire formats and present an alternative with significant advantages in terms of both performance and flexibility.\",\"PeriodicalId\":228250,\"journal\":{\"name\":\"ACM/IEEE SC 2000 Conference (SC'00)\",\"volume\":\"281 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2000-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"105\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACM/IEEE SC 2000 Conference (SC'00)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/SC.2000.10046\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACM/IEEE SC 2000 Conference (SC'00)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SC.2000.10046","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Efficient Wire Formats for High Performance Computing
High performance computing is being increasingly utilized in non-traditional circumstances where it must interoperate with other applications. For example, online visualization is being used to monitor the progress of applications, and real-world sensors are used as inputs to simulations. Whenever these situations arise, there is a question of what communications infrastructure should be used to link the different components. Traditional HPC-style communications systems such as MPI offer relatively high performance, but are poorly suited for developing these less tightly-coupled cooperating applications. Object-based systems and meta-data formats like XML offer substantial plug-and-play flexibility, but with substantially lower performance. We observe that the flexibility and baseline performance of all these systems is strongly determined by their `wire format', or how they represent data for transmission in a heterogeneous environment. We examine the performance implications of different wire formats and present an alternative with significant advantages in terms of both performance and flexibility.