基于空间关系的声明性知识增强黑素细胞病变图像分割

H. Kwasnicka, M. Paradowski
{"title":"基于空间关系的声明性知识增强黑素细胞病变图像分割","authors":"H. Kwasnicka, M. Paradowski","doi":"10.1109/ISDA.2005.63","DOIUrl":null,"url":null,"abstract":"This paper presents a method for enforcing image segmentation. Method presented here is a part of a wider research - an image understanding system. Regions of the image, extracted by a basic segmentation process, belong to certain classes. Spatial relations are calculated for extracted regions of the image, according to the declared knowledge. Declarative knowledge in the form of semantic rules is used as a second step to eliminate errors in the basic segmentation process. The approach is generic, but in this case it is used for melanoma skin lesions diagnosis.","PeriodicalId":345842,"journal":{"name":"5th International Conference on Intelligent Systems Design and Applications (ISDA'05)","volume":"81 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2005-09-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":"{\"title\":\"Melanocytic lesion images segmentation enforcing by spatial relations based declarative knowledge\",\"authors\":\"H. Kwasnicka, M. Paradowski\",\"doi\":\"10.1109/ISDA.2005.63\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper presents a method for enforcing image segmentation. Method presented here is a part of a wider research - an image understanding system. Regions of the image, extracted by a basic segmentation process, belong to certain classes. Spatial relations are calculated for extracted regions of the image, according to the declared knowledge. Declarative knowledge in the form of semantic rules is used as a second step to eliminate errors in the basic segmentation process. The approach is generic, but in this case it is used for melanoma skin lesions diagnosis.\",\"PeriodicalId\":345842,\"journal\":{\"name\":\"5th International Conference on Intelligent Systems Design and Applications (ISDA'05)\",\"volume\":\"81 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2005-09-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"7\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"5th International Conference on Intelligent Systems Design and Applications (ISDA'05)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ISDA.2005.63\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"5th International Conference on Intelligent Systems Design and Applications (ISDA'05)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISDA.2005.63","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 7

摘要

本文提出了一种增强图像分割的方法。这里提出的方法是一个更广泛的研究-图像理解系统的一部分。通过基本分割过程提取的图像区域属于一定的类别。根据声明的知识,计算图像提取区域的空间关系。第二步使用语义规则形式的陈述性知识来消除基本分割过程中的错误。这种方法是通用的,但在这种情况下,它被用于黑色素瘤皮肤病变的诊断。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Melanocytic lesion images segmentation enforcing by spatial relations based declarative knowledge
This paper presents a method for enforcing image segmentation. Method presented here is a part of a wider research - an image understanding system. Regions of the image, extracted by a basic segmentation process, belong to certain classes. Spatial relations are calculated for extracted regions of the image, according to the declared knowledge. Declarative knowledge in the form of semantic rules is used as a second step to eliminate errors in the basic segmentation process. The approach is generic, but in this case it is used for melanoma skin lesions diagnosis.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信