{"title":"基于矢量场制导的无人机风场最小时间路径收敛","authors":"Atharva Navsalkar, Sikha Hota","doi":"10.1109/ICC54714.2021.9703128","DOIUrl":null,"url":null,"abstract":"We present a novel guidance algorithm for unmanned aircraft to converge to a smooth path optimising time in the presence of wind. A Lyapunov vector field based method is used to achieve convergence and tracking. The proposed framework performs better in comparison with the similar work existing in literature. The presented approach modifies the vector field according to the velocity of the wind, facilitating faster convergence. A customised optimisation algorithm is then used to find a suitable design parameter for vector fields. To demonstrate the efficacy of the proposed approach, numerical simulations are shown and the results are compared with the optimal time paths obtained using optimal control theory.","PeriodicalId":382373,"journal":{"name":"2021 Seventh Indian Control Conference (ICC)","volume":"78 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-12-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Minimum-time Path Convergence for UAVs in Wind Using Vector Field Guidance\",\"authors\":\"Atharva Navsalkar, Sikha Hota\",\"doi\":\"10.1109/ICC54714.2021.9703128\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We present a novel guidance algorithm for unmanned aircraft to converge to a smooth path optimising time in the presence of wind. A Lyapunov vector field based method is used to achieve convergence and tracking. The proposed framework performs better in comparison with the similar work existing in literature. The presented approach modifies the vector field according to the velocity of the wind, facilitating faster convergence. A customised optimisation algorithm is then used to find a suitable design parameter for vector fields. To demonstrate the efficacy of the proposed approach, numerical simulations are shown and the results are compared with the optimal time paths obtained using optimal control theory.\",\"PeriodicalId\":382373,\"journal\":{\"name\":\"2021 Seventh Indian Control Conference (ICC)\",\"volume\":\"78 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-12-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2021 Seventh Indian Control Conference (ICC)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICC54714.2021.9703128\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 Seventh Indian Control Conference (ICC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICC54714.2021.9703128","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Minimum-time Path Convergence for UAVs in Wind Using Vector Field Guidance
We present a novel guidance algorithm for unmanned aircraft to converge to a smooth path optimising time in the presence of wind. A Lyapunov vector field based method is used to achieve convergence and tracking. The proposed framework performs better in comparison with the similar work existing in literature. The presented approach modifies the vector field according to the velocity of the wind, facilitating faster convergence. A customised optimisation algorithm is then used to find a suitable design parameter for vector fields. To demonstrate the efficacy of the proposed approach, numerical simulations are shown and the results are compared with the optimal time paths obtained using optimal control theory.