基于视觉腹流特征提取的鲁棒生物特征认证

Zohreh Yaghoubi, Morteza Eliasi, Ardalan Eliasi
{"title":"基于视觉腹流特征提取的鲁棒生物特征认证","authors":"Zohreh Yaghoubi, Morteza Eliasi, Ardalan Eliasi","doi":"10.1109/ICCAIE.2011.6162177","DOIUrl":null,"url":null,"abstract":"In this Paper, We use a set of the applicability features inspired by the visual Cortex. Each element of this set is a complex feature obtained by combining position- and scale-tolerant edge-detectors over neighboring positions and multiple orientations. Two standard classifiers KNN and SVM are then trained over a training set and then compared over a separate test set. A multimodal biometric system consolidates the evidence presented by multiple biometric sources and typically provides better recognition performance compared to systems based on a single biometric modality. So we use combination of Face, Ear and Palm characteristic to individual's authentication. In fusion stage we use matching-score level. Experimental results showed 96% accuracy rate on ORL Face database and 94% accuracy rate on USTB Ear database and 96.6% accuracy rate on POLYU Palm database; however we achieve 100% accuracy rate on multimodal biometric.","PeriodicalId":132155,"journal":{"name":"2011 IEEE International Conference on Computer Applications and Industrial Electronics (ICCAIE)","volume":"28 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2011-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Robust biometric authentication based on feature extracted from visual ventral stream\",\"authors\":\"Zohreh Yaghoubi, Morteza Eliasi, Ardalan Eliasi\",\"doi\":\"10.1109/ICCAIE.2011.6162177\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this Paper, We use a set of the applicability features inspired by the visual Cortex. Each element of this set is a complex feature obtained by combining position- and scale-tolerant edge-detectors over neighboring positions and multiple orientations. Two standard classifiers KNN and SVM are then trained over a training set and then compared over a separate test set. A multimodal biometric system consolidates the evidence presented by multiple biometric sources and typically provides better recognition performance compared to systems based on a single biometric modality. So we use combination of Face, Ear and Palm characteristic to individual's authentication. In fusion stage we use matching-score level. Experimental results showed 96% accuracy rate on ORL Face database and 94% accuracy rate on USTB Ear database and 96.6% accuracy rate on POLYU Palm database; however we achieve 100% accuracy rate on multimodal biometric.\",\"PeriodicalId\":132155,\"journal\":{\"name\":\"2011 IEEE International Conference on Computer Applications and Industrial Electronics (ICCAIE)\",\"volume\":\"28 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2011-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2011 IEEE International Conference on Computer Applications and Industrial Electronics (ICCAIE)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICCAIE.2011.6162177\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2011 IEEE International Conference on Computer Applications and Industrial Electronics (ICCAIE)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICCAIE.2011.6162177","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

在本文中,我们使用了一套受视觉皮层启发的适用性特征。该集合的每个元素都是一个复杂的特征,通过结合相邻位置和多个方向上的位置和尺度容忍边缘检测器获得。然后在一个训练集上训练两个标准分类器KNN和SVM,然后在一个单独的测试集上进行比较。多模态生物识别系统整合了多个生物识别来源提供的证据,与基于单一生物识别模态的系统相比,通常提供更好的识别性能。因此,我们结合脸、耳、掌的特征对个人进行身份验证。在融合阶段,我们使用匹配得分水平。实验结果表明,ORL Face数据库的准确率为96%,USTB Ear数据库的准确率为94%,POLYU Palm数据库的准确率为96.6%;然而,我们在多模态生物识别上达到了100%的准确率。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Robust biometric authentication based on feature extracted from visual ventral stream
In this Paper, We use a set of the applicability features inspired by the visual Cortex. Each element of this set is a complex feature obtained by combining position- and scale-tolerant edge-detectors over neighboring positions and multiple orientations. Two standard classifiers KNN and SVM are then trained over a training set and then compared over a separate test set. A multimodal biometric system consolidates the evidence presented by multiple biometric sources and typically provides better recognition performance compared to systems based on a single biometric modality. So we use combination of Face, Ear and Palm characteristic to individual's authentication. In fusion stage we use matching-score level. Experimental results showed 96% accuracy rate on ORL Face database and 94% accuracy rate on USTB Ear database and 96.6% accuracy rate on POLYU Palm database; however we achieve 100% accuracy rate on multimodal biometric.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信