将规则插入循环神经网络

Colin Giles, C. Omlin
{"title":"将规则插入循环神经网络","authors":"Colin Giles, C. Omlin","doi":"10.1109/NNSP.1992.253712","DOIUrl":null,"url":null,"abstract":"The authors present a method that incorporates a priori knowledge in the training of recurrent neural networks. This a priori knowledge can be interpreted as hints about the problem to be learned and these hints are encoded as rules which are then inserted into the neural network. The authors demonstrate the approach by training recurrent neural networks with inserted rules to learn to recognize regular languages from grammatical string examples. Because the recurrent networks have second-order connections, rule-insertion is a straightforward mapping of rules into weights and neurons. Simulations show that training recurrent networks with different amounts of partial knowledge to recognize simple grammers improves the training times by orders of magnitude, even when only a small fraction of all transitions are inserted as rules. In addition, there appears to be no loss in generalization performance.<<ETX>>","PeriodicalId":438250,"journal":{"name":"Neural Networks for Signal Processing II Proceedings of the 1992 IEEE Workshop","volume":"129 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1992-08-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"41","resultStr":"{\"title\":\"Inserting rules into recurrent neural networks\",\"authors\":\"Colin Giles, C. Omlin\",\"doi\":\"10.1109/NNSP.1992.253712\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The authors present a method that incorporates a priori knowledge in the training of recurrent neural networks. This a priori knowledge can be interpreted as hints about the problem to be learned and these hints are encoded as rules which are then inserted into the neural network. The authors demonstrate the approach by training recurrent neural networks with inserted rules to learn to recognize regular languages from grammatical string examples. Because the recurrent networks have second-order connections, rule-insertion is a straightforward mapping of rules into weights and neurons. Simulations show that training recurrent networks with different amounts of partial knowledge to recognize simple grammers improves the training times by orders of magnitude, even when only a small fraction of all transitions are inserted as rules. In addition, there appears to be no loss in generalization performance.<<ETX>>\",\"PeriodicalId\":438250,\"journal\":{\"name\":\"Neural Networks for Signal Processing II Proceedings of the 1992 IEEE Workshop\",\"volume\":\"129 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1992-08-31\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"41\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Neural Networks for Signal Processing II Proceedings of the 1992 IEEE Workshop\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/NNSP.1992.253712\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Neural Networks for Signal Processing II Proceedings of the 1992 IEEE Workshop","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/NNSP.1992.253712","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 41

摘要

作者提出了一种将先验知识纳入递归神经网络训练的方法。这种先验知识可以解释为关于要学习的问题的提示,这些提示被编码为规则,然后插入到神经网络中。作者通过训练带有插入规则的递归神经网络来学习从语法字符串示例中识别规则语言来演示该方法。由于循环网络具有二阶连接,规则插入是将规则直接映射到权重和神经元中。模拟表明,训练具有不同数量部分知识的循环网络来识别简单语法,即使只有一小部分转换作为规则插入,也可以将训练时间提高几个数量级。此外,在泛化性能上似乎没有损失
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Inserting rules into recurrent neural networks
The authors present a method that incorporates a priori knowledge in the training of recurrent neural networks. This a priori knowledge can be interpreted as hints about the problem to be learned and these hints are encoded as rules which are then inserted into the neural network. The authors demonstrate the approach by training recurrent neural networks with inserted rules to learn to recognize regular languages from grammatical string examples. Because the recurrent networks have second-order connections, rule-insertion is a straightforward mapping of rules into weights and neurons. Simulations show that training recurrent networks with different amounts of partial knowledge to recognize simple grammers improves the training times by orders of magnitude, even when only a small fraction of all transitions are inserted as rules. In addition, there appears to be no loss in generalization performance.<>
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信