基于微多普勒特征的目标分类

Jiajin Lei, Chao Lu
{"title":"基于微多普勒特征的目标分类","authors":"Jiajin Lei, Chao Lu","doi":"10.1109/RADAR.2005.1435815","DOIUrl":null,"url":null,"abstract":"In this paper, we propose a Gabor filtering method to extract localized micro-Doppler signatures represented in the time-frequency domain. The dimensionality of the extracted Gabor features is further reduced by using the principal component analysis (PCA) method. Therefore, a suitable classifier can be used for target classification based on their different motion dynamics. In our study, we use simulated radar data. Three different classifiers (Bayes linear, k-nearest neighbor, and support vector machine) are compared and tested. Our experiments show that Gabor features are robust in discriminating micro-Doppler effects of different types of micro-motions, and SVM classifier provides the best performance.","PeriodicalId":444253,"journal":{"name":"IEEE International Radar Conference, 2005.","volume":"125 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2005-05-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"67","resultStr":"{\"title\":\"Target classification based on micro-Doppler signatures\",\"authors\":\"Jiajin Lei, Chao Lu\",\"doi\":\"10.1109/RADAR.2005.1435815\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, we propose a Gabor filtering method to extract localized micro-Doppler signatures represented in the time-frequency domain. The dimensionality of the extracted Gabor features is further reduced by using the principal component analysis (PCA) method. Therefore, a suitable classifier can be used for target classification based on their different motion dynamics. In our study, we use simulated radar data. Three different classifiers (Bayes linear, k-nearest neighbor, and support vector machine) are compared and tested. Our experiments show that Gabor features are robust in discriminating micro-Doppler effects of different types of micro-motions, and SVM classifier provides the best performance.\",\"PeriodicalId\":444253,\"journal\":{\"name\":\"IEEE International Radar Conference, 2005.\",\"volume\":\"125 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2005-05-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"67\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE International Radar Conference, 2005.\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/RADAR.2005.1435815\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE International Radar Conference, 2005.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/RADAR.2005.1435815","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 67

摘要

在本文中,我们提出了一种Gabor滤波方法来提取局部微多普勒特征,这些特征表示在时频域中。利用主成分分析(PCA)方法对提取的Gabor特征进一步降维。因此,可以根据目标的不同运动动态,选择合适的分类器进行目标分类。在我们的研究中,我们使用模拟雷达数据。三种不同的分类器(贝叶斯线性,k近邻和支持向量机)进行了比较和测试。实验表明,Gabor特征对不同微运动类型的微多普勒效应具有较强的鲁棒性,其中SVM分类器的性能最好。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Target classification based on micro-Doppler signatures
In this paper, we propose a Gabor filtering method to extract localized micro-Doppler signatures represented in the time-frequency domain. The dimensionality of the extracted Gabor features is further reduced by using the principal component analysis (PCA) method. Therefore, a suitable classifier can be used for target classification based on their different motion dynamics. In our study, we use simulated radar data. Three different classifiers (Bayes linear, k-nearest neighbor, and support vector machine) are compared and tested. Our experiments show that Gabor features are robust in discriminating micro-Doppler effects of different types of micro-motions, and SVM classifier provides the best performance.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信