{"title":"为数据驱动的基于规则的应用引入新的GRASS模块g.f einfer","authors":"P. Löwe","doi":"10.14311/GI.8.2","DOIUrl":null,"url":null,"abstract":"This paper introduces the new GRASS GIS add-on module g.infer. The module enables rule-based analysis and workflow management in GRASS GIS, via data-driven inference processes based on the expert system shell CLIPS. The paper discusses the theoretical and developmental background that will help prepare the reader to use the module for Knowledge Engineering applications. In addition, potential application scenarios are sketched out, ranging from the rule-driven formulation of nontrivial GIS-classification tasks and GIS workflows to ontology management and intelligent software agents.","PeriodicalId":436054,"journal":{"name":"Geoinformatics FCE CTU","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2012-10-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Introducing the new GRASS module g.infer for data-driven rule-based applications\",\"authors\":\"P. Löwe\",\"doi\":\"10.14311/GI.8.2\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper introduces the new GRASS GIS add-on module g.infer. The module enables rule-based analysis and workflow management in GRASS GIS, via data-driven inference processes based on the expert system shell CLIPS. The paper discusses the theoretical and developmental background that will help prepare the reader to use the module for Knowledge Engineering applications. In addition, potential application scenarios are sketched out, ranging from the rule-driven formulation of nontrivial GIS-classification tasks and GIS workflows to ontology management and intelligent software agents.\",\"PeriodicalId\":436054,\"journal\":{\"name\":\"Geoinformatics FCE CTU\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2012-10-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Geoinformatics FCE CTU\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.14311/GI.8.2\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Geoinformatics FCE CTU","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.14311/GI.8.2","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Introducing the new GRASS module g.infer for data-driven rule-based applications
This paper introduces the new GRASS GIS add-on module g.infer. The module enables rule-based analysis and workflow management in GRASS GIS, via data-driven inference processes based on the expert system shell CLIPS. The paper discusses the theoretical and developmental background that will help prepare the reader to use the module for Knowledge Engineering applications. In addition, potential application scenarios are sketched out, ranging from the rule-driven formulation of nontrivial GIS-classification tasks and GIS workflows to ontology management and intelligent software agents.