没有当地数据的准确估计?

T. Menzies, Steve Williams, Oussama El-Rawas, D. Baker, B. Boehm, J. Hihn, K. Lum, R. Madachy
{"title":"没有当地数据的准确估计?","authors":"T. Menzies, Steve Williams, Oussama El-Rawas, D. Baker, B. Boehm, J. Hihn, K. Lum, R. Madachy","doi":"10.1002/spip.414","DOIUrl":null,"url":null,"abstract":"Models of software projects input project details and output predictions via their internal tunings. The output predictions, therefore, are affected by variance in the project details P and variance in the internal tunings T. Local data is often used to constrain the internal tunings (reducing T). \n \nWhile constraining internal tunings with local data is always the preferred option, there exist some models for which constraining tuning is optional. We show empirically that, for the USC COCOMO family of models, the effects of P dominate the effects of T i.e. the output variance of these models can be controlled without using local data to constrain the tuning variance (in ten case studies, we show that the estimates generated by only constraining P are very similar to those produced by constraining T with historical data). \n \nWe conclude that, if possible, models should be designed such that the effects of the project options dominate the effects of the tuning options. Such models can be used for the purposes of decision making without elaborate, tedious, and time-consuming data collection from the local domain. Copyright © 2009 John Wiley & Sons, Ltd.","PeriodicalId":379836,"journal":{"name":"Softw. Process. Improv. Pract.","volume":"16 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2009-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"21","resultStr":"{\"title\":\"Accurate estimates without local data?\",\"authors\":\"T. Menzies, Steve Williams, Oussama El-Rawas, D. Baker, B. Boehm, J. Hihn, K. Lum, R. Madachy\",\"doi\":\"10.1002/spip.414\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Models of software projects input project details and output predictions via their internal tunings. The output predictions, therefore, are affected by variance in the project details P and variance in the internal tunings T. Local data is often used to constrain the internal tunings (reducing T). \\n \\nWhile constraining internal tunings with local data is always the preferred option, there exist some models for which constraining tuning is optional. We show empirically that, for the USC COCOMO family of models, the effects of P dominate the effects of T i.e. the output variance of these models can be controlled without using local data to constrain the tuning variance (in ten case studies, we show that the estimates generated by only constraining P are very similar to those produced by constraining T with historical data). \\n \\nWe conclude that, if possible, models should be designed such that the effects of the project options dominate the effects of the tuning options. Such models can be used for the purposes of decision making without elaborate, tedious, and time-consuming data collection from the local domain. Copyright © 2009 John Wiley & Sons, Ltd.\",\"PeriodicalId\":379836,\"journal\":{\"name\":\"Softw. Process. Improv. Pract.\",\"volume\":\"16 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2009-07-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"21\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Softw. Process. Improv. Pract.\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1002/spip.414\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Softw. Process. Improv. Pract.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1002/spip.414","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 21

摘要

软件项目模型通过其内部调优输入项目细节并输出预测。因此,输出预测受到项目细节P的方差和内部调优T的方差的影响。本地数据通常用于约束内部调优(减少T)。虽然使用本地数据约束内部调优始终是首选选项,但存在一些模型,其中约束调优是可选的。我们的经验表明,对于USC COCOMO系列模型,P的影响主导了T的影响,即这些模型的输出方差可以在不使用本地数据约束调整方差的情况下得到控制(在十个案例研究中,我们表明仅通过约束P产生的估计与使用历史数据约束T产生的估计非常相似)。我们的结论是,如果可能的话,应该设计这样的模型,使项目选项的影响支配调优选项的影响。这样的模型可以用于决策制定的目的,而不需要从本地领域收集复杂、繁琐和耗时的数据。版权所有©2009 John Wiley & Sons, Ltd
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Accurate estimates without local data?
Models of software projects input project details and output predictions via their internal tunings. The output predictions, therefore, are affected by variance in the project details P and variance in the internal tunings T. Local data is often used to constrain the internal tunings (reducing T). While constraining internal tunings with local data is always the preferred option, there exist some models for which constraining tuning is optional. We show empirically that, for the USC COCOMO family of models, the effects of P dominate the effects of T i.e. the output variance of these models can be controlled without using local data to constrain the tuning variance (in ten case studies, we show that the estimates generated by only constraining P are very similar to those produced by constraining T with historical data). We conclude that, if possible, models should be designed such that the effects of the project options dominate the effects of the tuning options. Such models can be used for the purposes of decision making without elaborate, tedious, and time-consuming data collection from the local domain. Copyright © 2009 John Wiley & Sons, Ltd.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信