事务性内存的未来

Jingna Zeng, J. Barreto, Seif Haridi, L. Rodrigues, P. Romano
{"title":"事务性内存的未来","authors":"Jingna Zeng, J. Barreto, Seif Haridi, L. Rodrigues, P. Romano","doi":"10.1109/ICPP.2016.57","DOIUrl":null,"url":null,"abstract":"This work investigates how to combine two powerful abstractions to manage concurrent programming: Transactional Memory (TM) and futures. The former hides from programmers the complexity of synchronizing concurrent access to shared data, via the familiar abstraction of atomic transactions. The latter serves to schedule and synchronize the parallel execution of computations whose results are not immediately required. While TM and futures are two widely investigated topics, the problem of how to exploit these two abstractions in synergy is still largely unexplored in the literature. This paper fills this gap by introducing Java Transactional Futures (JTF), a Java-based TM implementation that allows programmers to use futures to coordinate the execution of parallel tasks, while leveraging transactions to synchronize accesses to shared data. JTF provides a simple and intuitive semantic regarding the admissible serialization orders of the futures spawned by transactions, by ensuring that the results produced by a future are always consistent with those that one would obtain by executing the future sequentially. Our experimental results show that the use of futures in a TM allows not only to unlock parallelism within transactions, but also to reduce the cost of conflicts among top-level transactions in high contention workloads.","PeriodicalId":409991,"journal":{"name":"2016 45th International Conference on Parallel Processing (ICPP)","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2016-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":"{\"title\":\"The Future(s) of Transactional Memory\",\"authors\":\"Jingna Zeng, J. Barreto, Seif Haridi, L. Rodrigues, P. Romano\",\"doi\":\"10.1109/ICPP.2016.57\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This work investigates how to combine two powerful abstractions to manage concurrent programming: Transactional Memory (TM) and futures. The former hides from programmers the complexity of synchronizing concurrent access to shared data, via the familiar abstraction of atomic transactions. The latter serves to schedule and synchronize the parallel execution of computations whose results are not immediately required. While TM and futures are two widely investigated topics, the problem of how to exploit these two abstractions in synergy is still largely unexplored in the literature. This paper fills this gap by introducing Java Transactional Futures (JTF), a Java-based TM implementation that allows programmers to use futures to coordinate the execution of parallel tasks, while leveraging transactions to synchronize accesses to shared data. JTF provides a simple and intuitive semantic regarding the admissible serialization orders of the futures spawned by transactions, by ensuring that the results produced by a future are always consistent with those that one would obtain by executing the future sequentially. Our experimental results show that the use of futures in a TM allows not only to unlock parallelism within transactions, but also to reduce the cost of conflicts among top-level transactions in high contention workloads.\",\"PeriodicalId\":409991,\"journal\":{\"name\":\"2016 45th International Conference on Parallel Processing (ICPP)\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2016-08-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"5\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2016 45th International Conference on Parallel Processing (ICPP)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICPP.2016.57\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 45th International Conference on Parallel Processing (ICPP)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICPP.2016.57","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5

摘要

这项工作研究了如何结合两个强大的抽象来管理并发编程:事务内存(Transactional Memory, TM)和未来。前者通过熟悉的原子事务抽象,向程序员隐藏了同步并发访问共享数据的复杂性。后者用于调度和同步计算的并行执行,这些计算的结果不是立即需要的。虽然TM和期货是两个被广泛研究的主题,但如何在协同作用中利用这两个抽象概念的问题在文献中仍然很大程度上未被探索。本文通过引入Java事务期货(JTF)来填补这一空白,JTF是一种基于Java的TM实现,它允许程序员使用期货来协调并行任务的执行,同时利用事务来同步对共享数据的访问。JTF通过确保future生成的结果始终与顺序执行future所获得的结果一致,为事务生成的future的可接受序列化顺序提供了简单而直观的语义。我们的实验结果表明,在TM中使用期货不仅可以解锁事务内部的并行性,还可以降低高争用工作负载下顶级事务之间冲突的成本。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
The Future(s) of Transactional Memory
This work investigates how to combine two powerful abstractions to manage concurrent programming: Transactional Memory (TM) and futures. The former hides from programmers the complexity of synchronizing concurrent access to shared data, via the familiar abstraction of atomic transactions. The latter serves to schedule and synchronize the parallel execution of computations whose results are not immediately required. While TM and futures are two widely investigated topics, the problem of how to exploit these two abstractions in synergy is still largely unexplored in the literature. This paper fills this gap by introducing Java Transactional Futures (JTF), a Java-based TM implementation that allows programmers to use futures to coordinate the execution of parallel tasks, while leveraging transactions to synchronize accesses to shared data. JTF provides a simple and intuitive semantic regarding the admissible serialization orders of the futures spawned by transactions, by ensuring that the results produced by a future are always consistent with those that one would obtain by executing the future sequentially. Our experimental results show that the use of futures in a TM allows not only to unlock parallelism within transactions, but also to reduce the cost of conflicts among top-level transactions in high contention workloads.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信