{"title":"ω-群类群上的一些构造","authors":"Thorsten Altenkirch, Nuo Li, Ondrej Rypacek","doi":"10.1145/2631172.2631176","DOIUrl":null,"url":null,"abstract":"Weak ω-groupoids are the higher dimensional generalisation of setoids and are an essential ingredient of the constructive semantics of Homotopy Type Theory [13]. Following up on our previous formalisation [3] and Brunerie's notes [6], we present a new formalisation of the syntax of weak ω-groupoids in Agda using heterogeneous equality. We show how to recover basic constructions on ω-groupoids using suspension and replacement. In particular we show that any type forms a groupoid and we outline how to derive higher dimensional composition. We present a possible semantics using globular sets and discuss the issues which arise when using globular types instead.","PeriodicalId":262518,"journal":{"name":"International Workshop on Logical Frameworks and Meta-Languages: Theory and Practice","volume":"33 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-07-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":"{\"title\":\"Some constructions on ω-groupoids\",\"authors\":\"Thorsten Altenkirch, Nuo Li, Ondrej Rypacek\",\"doi\":\"10.1145/2631172.2631176\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Weak ω-groupoids are the higher dimensional generalisation of setoids and are an essential ingredient of the constructive semantics of Homotopy Type Theory [13]. Following up on our previous formalisation [3] and Brunerie's notes [6], we present a new formalisation of the syntax of weak ω-groupoids in Agda using heterogeneous equality. We show how to recover basic constructions on ω-groupoids using suspension and replacement. In particular we show that any type forms a groupoid and we outline how to derive higher dimensional composition. We present a possible semantics using globular sets and discuss the issues which arise when using globular types instead.\",\"PeriodicalId\":262518,\"journal\":{\"name\":\"International Workshop on Logical Frameworks and Meta-Languages: Theory and Practice\",\"volume\":\"33 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2014-07-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"6\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Workshop on Logical Frameworks and Meta-Languages: Theory and Practice\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/2631172.2631176\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Workshop on Logical Frameworks and Meta-Languages: Theory and Practice","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/2631172.2631176","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Weak ω-groupoids are the higher dimensional generalisation of setoids and are an essential ingredient of the constructive semantics of Homotopy Type Theory [13]. Following up on our previous formalisation [3] and Brunerie's notes [6], we present a new formalisation of the syntax of weak ω-groupoids in Agda using heterogeneous equality. We show how to recover basic constructions on ω-groupoids using suspension and replacement. In particular we show that any type forms a groupoid and we outline how to derive higher dimensional composition. We present a possible semantics using globular sets and discuss the issues which arise when using globular types instead.