{"title":"全局函数域上约化群齐次空间的局部-全局原理","authors":"C. Demarche, David Harari","doi":"10.5802/ahl.144","DOIUrl":null,"url":null,"abstract":"Let $K$ be a global field of positive characteristic. We prove that the Brauer-Manin obstructions to the Hasse principle, to weak approximation and to strong approximation are the only ones for homogeneous spaces of reductive groups with reductive stabilizers. The methods involve abelianization techniques and arithmetic duality theorems for complexes of tori over K.","PeriodicalId":192307,"journal":{"name":"Annales Henri Lebesgue","volume":"38 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-07-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Local-global principles for homogeneous spaces of reductive groups over global function fields\",\"authors\":\"C. Demarche, David Harari\",\"doi\":\"10.5802/ahl.144\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Let $K$ be a global field of positive characteristic. We prove that the Brauer-Manin obstructions to the Hasse principle, to weak approximation and to strong approximation are the only ones for homogeneous spaces of reductive groups with reductive stabilizers. The methods involve abelianization techniques and arithmetic duality theorems for complexes of tori over K.\",\"PeriodicalId\":192307,\"journal\":{\"name\":\"Annales Henri Lebesgue\",\"volume\":\"38 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-07-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Annales Henri Lebesgue\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.5802/ahl.144\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Annales Henri Lebesgue","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5802/ahl.144","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Local-global principles for homogeneous spaces of reductive groups over global function fields
Let $K$ be a global field of positive characteristic. We prove that the Brauer-Manin obstructions to the Hasse principle, to weak approximation and to strong approximation are the only ones for homogeneous spaces of reductive groups with reductive stabilizers. The methods involve abelianization techniques and arithmetic duality theorems for complexes of tori over K.