全局函数域上约化群齐次空间的局部-全局原理

C. Demarche, David Harari
{"title":"全局函数域上约化群齐次空间的局部-全局原理","authors":"C. Demarche, David Harari","doi":"10.5802/ahl.144","DOIUrl":null,"url":null,"abstract":"Let $K$ be a global field of positive characteristic. We prove that the Brauer-Manin obstructions to the Hasse principle, to weak approximation and to strong approximation are the only ones for homogeneous spaces of reductive groups with reductive stabilizers. The methods involve abelianization techniques and arithmetic duality theorems for complexes of tori over K.","PeriodicalId":192307,"journal":{"name":"Annales Henri Lebesgue","volume":"38 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-07-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Local-global principles for homogeneous spaces of reductive groups over global function fields\",\"authors\":\"C. Demarche, David Harari\",\"doi\":\"10.5802/ahl.144\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Let $K$ be a global field of positive characteristic. We prove that the Brauer-Manin obstructions to the Hasse principle, to weak approximation and to strong approximation are the only ones for homogeneous spaces of reductive groups with reductive stabilizers. The methods involve abelianization techniques and arithmetic duality theorems for complexes of tori over K.\",\"PeriodicalId\":192307,\"journal\":{\"name\":\"Annales Henri Lebesgue\",\"volume\":\"38 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-07-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Annales Henri Lebesgue\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.5802/ahl.144\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Annales Henri Lebesgue","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5802/ahl.144","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

设$K$为正特征的全局场。证明了具有约化稳定子的约群的齐次空间中,只有对Hasse原理、弱逼近和强逼近的Brauer-Manin障碍存在。该方法涉及到K上环面复形的阿贝尔化技术和算术对偶定理。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Local-global principles for homogeneous spaces of reductive groups over global function fields
Let $K$ be a global field of positive characteristic. We prove that the Brauer-Manin obstructions to the Hasse principle, to weak approximation and to strong approximation are the only ones for homogeneous spaces of reductive groups with reductive stabilizers. The methods involve abelianization techniques and arithmetic duality theorems for complexes of tori over K.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信