利用自动编码和分数匹配促进粒子追踪中的数据关联

Ihor Smal, Yao Yao, N. Galjart, E. Meijering
{"title":"利用自动编码和分数匹配促进粒子追踪中的数据关联","authors":"Ihor Smal, Yao Yao, N. Galjart, E. Meijering","doi":"10.1109/ISBI.2019.8759418","DOIUrl":null,"url":null,"abstract":"A crucial aspect of automated particle tracking in time-lapse fluorescence microscopy images is the linking or association of detected objects between frames. Recent evaluation studies have shown that the best results are achieved by making use of accurate motion models of the underlying particle dynamics. However, existing approaches often employ rather simple motion models which may be inappropriate for a given application, and even if complex models are used they all require careful user-parameter tuning. To alleviate these problems we propose a novel method based on autoencoding and score matching which can learn the dynamics from the data. Results on both synthetic and real data show the method performs comparable to state-of-the-art linking methods.","PeriodicalId":119935,"journal":{"name":"2019 IEEE 16th International Symposium on Biomedical Imaging (ISBI 2019)","volume":"13 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":"{\"title\":\"Facilitating Data Association In Particle Tracking Using Autoencoding And Score Matching\",\"authors\":\"Ihor Smal, Yao Yao, N. Galjart, E. Meijering\",\"doi\":\"10.1109/ISBI.2019.8759418\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A crucial aspect of automated particle tracking in time-lapse fluorescence microscopy images is the linking or association of detected objects between frames. Recent evaluation studies have shown that the best results are achieved by making use of accurate motion models of the underlying particle dynamics. However, existing approaches often employ rather simple motion models which may be inappropriate for a given application, and even if complex models are used they all require careful user-parameter tuning. To alleviate these problems we propose a novel method based on autoencoding and score matching which can learn the dynamics from the data. Results on both synthetic and real data show the method performs comparable to state-of-the-art linking methods.\",\"PeriodicalId\":119935,\"journal\":{\"name\":\"2019 IEEE 16th International Symposium on Biomedical Imaging (ISBI 2019)\",\"volume\":\"13 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-04-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"5\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2019 IEEE 16th International Symposium on Biomedical Imaging (ISBI 2019)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ISBI.2019.8759418\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 IEEE 16th International Symposium on Biomedical Imaging (ISBI 2019)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISBI.2019.8759418","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5

摘要

延时荧光显微镜图像中自动粒子跟踪的一个关键方面是在帧之间连接或关联检测到的物体。最近的评估研究表明,最好的结果是通过使用精确的运动模型来实现潜在的粒子动力学。然而,现有的方法通常采用相当简单的运动模型,这可能不适合给定的应用程序,即使使用复杂的模型,它们也需要仔细地调整用户参数。为了解决这些问题,我们提出了一种基于自动编码和分数匹配的新方法,可以从数据中学习动态。合成数据和实际数据的结果表明,该方法的性能可与最先进的连接方法相媲美。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Facilitating Data Association In Particle Tracking Using Autoencoding And Score Matching
A crucial aspect of automated particle tracking in time-lapse fluorescence microscopy images is the linking or association of detected objects between frames. Recent evaluation studies have shown that the best results are achieved by making use of accurate motion models of the underlying particle dynamics. However, existing approaches often employ rather simple motion models which may be inappropriate for a given application, and even if complex models are used they all require careful user-parameter tuning. To alleviate these problems we propose a novel method based on autoencoding and score matching which can learn the dynamics from the data. Results on both synthetic and real data show the method performs comparable to state-of-the-art linking methods.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信