使用DeeplabV3+和EfficientNet进行有缺陷的缝纫缝线语义分割

Quoc Toan Nguyen
{"title":"使用DeeplabV3+和EfficientNet进行有缺陷的缝纫缝线语义分割","authors":"Quoc Toan Nguyen","doi":"10.4114/intartif.vol25iss70pp64-76","DOIUrl":null,"url":null,"abstract":"Defective stitch inspection is an essential part of garment manufacturing quality assurance. Traditional mechanical defect detection systems are effective, but they are usually customized with handcrafted features that must be operated by a human. Deep learning approaches have recently demonstrated exceptional performance in a wide range of computer vision applications. The requirement for precise detail evaluation, combined with the small size of the patterns, undoubtedly increases the difficulty of identification. Therefore, image segmentation (semantic segmentation) was employed for this task. It is identified as a vital research topic in the field of computer vision, being indispensable in a wide range of real-world applications. Semantic segmentation is a method of labeling each pixel in an image. This is in direct contrast to classification, which assigns a single label to the entire image. And multiple objects of the same class are defined as a single entity. DeepLabV3+ architecture, with encoder-decoder architecture, is the proposed technique. EfficientNet models (B0-B2) were applied as encoders for experimental processes. The encoder is utilized to encode feature maps from the input image. The encoder's significant information is used by the decoder for upsampling and reconstruction of output. Finally, the best model is DeeplabV3+ with EfficientNetB1 which can classify segmented defective sewing stitches with superior performance (MeanIoU: 94.14%).","PeriodicalId":176050,"journal":{"name":"Inteligencia Artif.","volume":"75 6 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-11-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Defective sewing stitch semantic segmentation using DeeplabV3+ and EfficientNet\",\"authors\":\"Quoc Toan Nguyen\",\"doi\":\"10.4114/intartif.vol25iss70pp64-76\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Defective stitch inspection is an essential part of garment manufacturing quality assurance. Traditional mechanical defect detection systems are effective, but they are usually customized with handcrafted features that must be operated by a human. Deep learning approaches have recently demonstrated exceptional performance in a wide range of computer vision applications. The requirement for precise detail evaluation, combined with the small size of the patterns, undoubtedly increases the difficulty of identification. Therefore, image segmentation (semantic segmentation) was employed for this task. It is identified as a vital research topic in the field of computer vision, being indispensable in a wide range of real-world applications. Semantic segmentation is a method of labeling each pixel in an image. This is in direct contrast to classification, which assigns a single label to the entire image. And multiple objects of the same class are defined as a single entity. DeepLabV3+ architecture, with encoder-decoder architecture, is the proposed technique. EfficientNet models (B0-B2) were applied as encoders for experimental processes. The encoder is utilized to encode feature maps from the input image. The encoder's significant information is used by the decoder for upsampling and reconstruction of output. Finally, the best model is DeeplabV3+ with EfficientNetB1 which can classify segmented defective sewing stitches with superior performance (MeanIoU: 94.14%).\",\"PeriodicalId\":176050,\"journal\":{\"name\":\"Inteligencia Artif.\",\"volume\":\"75 6 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-11-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Inteligencia Artif.\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.4114/intartif.vol25iss70pp64-76\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Inteligencia Artif.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4114/intartif.vol25iss70pp64-76","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

针脚疵点检验是服装生产质量保证的重要环节。传统的机械缺陷检测系统是有效的,但它们通常是定制的,带有手工制作的特征,必须由人工操作。深度学习方法最近在广泛的计算机视觉应用中表现出优异的性能。对精确细节评估的要求,加上图案的小尺寸,无疑增加了识别的难度。因此,该任务采用图像分割(语义分割)。它被认为是计算机视觉领域的一个重要研究课题,在广泛的现实应用中不可或缺。语义分割是一种标记图像中每个像素的方法。这与为整个图像分配单个标签的分类形成了直接对比。同一类的多个对象被定义为单个实体。DeepLabV3+架构采用编码器-解码器架构。实验过程采用EfficientNet模型(B0-B2)作为编码器。利用编码器对输入图像的特征映射进行编码。解码器使用编码器的有效信息对输出进行上采样和重构。最后,最好的模型是DeeplabV3+和EfficientNetB1,它可以对分段缺陷缝线进行分类,性能优越(MeanIoU: 94.14%)。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Defective sewing stitch semantic segmentation using DeeplabV3+ and EfficientNet
Defective stitch inspection is an essential part of garment manufacturing quality assurance. Traditional mechanical defect detection systems are effective, but they are usually customized with handcrafted features that must be operated by a human. Deep learning approaches have recently demonstrated exceptional performance in a wide range of computer vision applications. The requirement for precise detail evaluation, combined with the small size of the patterns, undoubtedly increases the difficulty of identification. Therefore, image segmentation (semantic segmentation) was employed for this task. It is identified as a vital research topic in the field of computer vision, being indispensable in a wide range of real-world applications. Semantic segmentation is a method of labeling each pixel in an image. This is in direct contrast to classification, which assigns a single label to the entire image. And multiple objects of the same class are defined as a single entity. DeepLabV3+ architecture, with encoder-decoder architecture, is the proposed technique. EfficientNet models (B0-B2) were applied as encoders for experimental processes. The encoder is utilized to encode feature maps from the input image. The encoder's significant information is used by the decoder for upsampling and reconstruction of output. Finally, the best model is DeeplabV3+ with EfficientNetB1 which can classify segmented defective sewing stitches with superior performance (MeanIoU: 94.14%).
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信