利用Mask-R-CNN从图像数据中检测道路洪水

S. Sarp, M. Kuzlu, M. Cetin, Cem Sazara, Özgür Güler
{"title":"利用Mask-R-CNN从图像数据中检测道路洪水","authors":"S. Sarp, M. Kuzlu, M. Cetin, Cem Sazara, Özgür Güler","doi":"10.1109/INISTA49547.2020.9194655","DOIUrl":null,"url":null,"abstract":"Object detection and segmentation algorithms evolved significantly in the last decade. Simultaneous object detection and segmentation paved the way for real-time applications such as autonomous driving. Detection and segmentation of (partially) flooded roadways are important inputs for vehicle routing and traffic management systems. This paper proposes an automatic floodwater detection and segmentation method utilizing the Mask-R-CNN algorithm - a deep learning algorithm belonging to Region-Based Convolutional Neural Networks (R-CNN) family of models for object detection and semantic segmentation. As the latest evolution in the R-CNN family, Mask-R-CNN fuses localization, classification, and segmentation in a compact and fast algorithm. To train the model, manually labeled images with urban, suburban, and natural settings are used. The performance of the algorithm is assessed in accurately detecting the floodwater captured in images. The results show that the proposed floodwater detection and segmentation perform better than previous studies.","PeriodicalId":124632,"journal":{"name":"2020 International Conference on INnovations in Intelligent SysTems and Applications (INISTA)","volume":"27 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"12","resultStr":"{\"title\":\"Detecting Floodwater on Roadways from Image Data Using Mask-R-CNN\",\"authors\":\"S. Sarp, M. Kuzlu, M. Cetin, Cem Sazara, Özgür Güler\",\"doi\":\"10.1109/INISTA49547.2020.9194655\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Object detection and segmentation algorithms evolved significantly in the last decade. Simultaneous object detection and segmentation paved the way for real-time applications such as autonomous driving. Detection and segmentation of (partially) flooded roadways are important inputs for vehicle routing and traffic management systems. This paper proposes an automatic floodwater detection and segmentation method utilizing the Mask-R-CNN algorithm - a deep learning algorithm belonging to Region-Based Convolutional Neural Networks (R-CNN) family of models for object detection and semantic segmentation. As the latest evolution in the R-CNN family, Mask-R-CNN fuses localization, classification, and segmentation in a compact and fast algorithm. To train the model, manually labeled images with urban, suburban, and natural settings are used. The performance of the algorithm is assessed in accurately detecting the floodwater captured in images. The results show that the proposed floodwater detection and segmentation perform better than previous studies.\",\"PeriodicalId\":124632,\"journal\":{\"name\":\"2020 International Conference on INnovations in Intelligent SysTems and Applications (INISTA)\",\"volume\":\"27 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-08-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"12\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2020 International Conference on INnovations in Intelligent SysTems and Applications (INISTA)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/INISTA49547.2020.9194655\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 International Conference on INnovations in Intelligent SysTems and Applications (INISTA)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/INISTA49547.2020.9194655","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 12

摘要

在过去的十年中,目标检测和分割算法有了很大的发展。同时目标检测和分割为自动驾驶等实时应用铺平了道路。检测和分割(部分)被水淹没的道路是车辆路线和交通管理系统的重要输入。本文提出了一种利用Mask-R-CNN算法的自动洪水检测和分割方法。Mask-R-CNN算法是一种深度学习算法,属于基于区域的卷积神经网络(R-CNN)的目标检测和语义分割模型家族。作为R-CNN家族的最新发展,Mask-R-CNN融合了定位、分类和分割,算法紧凑、快速。为了训练模型,使用手动标记的图像,包括城市、郊区和自然环境。通过对图像中捕获的洪水进行准确检测,对算法的性能进行了评价。结果表明,本文提出的洪水检测和分割方法优于以往的研究方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Detecting Floodwater on Roadways from Image Data Using Mask-R-CNN
Object detection and segmentation algorithms evolved significantly in the last decade. Simultaneous object detection and segmentation paved the way for real-time applications such as autonomous driving. Detection and segmentation of (partially) flooded roadways are important inputs for vehicle routing and traffic management systems. This paper proposes an automatic floodwater detection and segmentation method utilizing the Mask-R-CNN algorithm - a deep learning algorithm belonging to Region-Based Convolutional Neural Networks (R-CNN) family of models for object detection and semantic segmentation. As the latest evolution in the R-CNN family, Mask-R-CNN fuses localization, classification, and segmentation in a compact and fast algorithm. To train the model, manually labeled images with urban, suburban, and natural settings are used. The performance of the algorithm is assessed in accurately detecting the floodwater captured in images. The results show that the proposed floodwater detection and segmentation perform better than previous studies.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信