基于ANFIS模型的1型和区间2型模糊积分器在道琼斯时间序列预测中的优化

Jesus Soto, P. Melin, O. Castillo
{"title":"基于ANFIS模型的1型和区间2型模糊积分器在道琼斯时间序列预测中的优化","authors":"Jesus Soto, P. Melin, O. Castillo","doi":"10.1109/CIDM.2014.7008666","DOIUrl":null,"url":null,"abstract":"This paper describes the optimization of interval type-2 fuzzy integrators in Ensembles of ANFIS (adaptive neuro-fuzzy inferences systems) models for the prediction of the Dow Jones time series. The Dow Jones time series is used to the test of performance of the proposed ensemble architecture. We used the interval type-2 and type-1 fuzzy systems to integrate the output (forecast) of each Ensemble of ANFIS models. Genetic Algorithms (GAs) were used for the optimization of membership function parameters of each interval type-2 fuzzy integrator. In the experiments we optimized Gaussian, Generalized Bell and Triangular membership functions parameter for each of the fuzzy integrators, thereby increasing the complexity of the training. Simulation results show the effectiveness of the proposed approach.","PeriodicalId":117542,"journal":{"name":"2014 IEEE Symposium on Computational Intelligence and Data Mining (CIDM)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Optimization of the type-1 and interval type-2 fuzzy integrators in Ensembles of ANFIS models for prediction of the Dow Jones time series\",\"authors\":\"Jesus Soto, P. Melin, O. Castillo\",\"doi\":\"10.1109/CIDM.2014.7008666\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper describes the optimization of interval type-2 fuzzy integrators in Ensembles of ANFIS (adaptive neuro-fuzzy inferences systems) models for the prediction of the Dow Jones time series. The Dow Jones time series is used to the test of performance of the proposed ensemble architecture. We used the interval type-2 and type-1 fuzzy systems to integrate the output (forecast) of each Ensemble of ANFIS models. Genetic Algorithms (GAs) were used for the optimization of membership function parameters of each interval type-2 fuzzy integrator. In the experiments we optimized Gaussian, Generalized Bell and Triangular membership functions parameter for each of the fuzzy integrators, thereby increasing the complexity of the training. Simulation results show the effectiveness of the proposed approach.\",\"PeriodicalId\":117542,\"journal\":{\"name\":\"2014 IEEE Symposium on Computational Intelligence and Data Mining (CIDM)\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2014-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2014 IEEE Symposium on Computational Intelligence and Data Mining (CIDM)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/CIDM.2014.7008666\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2014 IEEE Symposium on Computational Intelligence and Data Mining (CIDM)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CIDM.2014.7008666","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

本文描述了区间2型模糊积分器在自适应神经模糊推理系统(ANFIS)模型集成中的优化问题,用于预测道琼斯时间序列。采用道琼斯时间序列对所提出的集成体系结构的性能进行了测试。我们使用区间2型和1型模糊系统来整合ANFIS模型的每个集合的输出(预测)。采用遗传算法对各区间2型模糊积分器的隶属函数参数进行优化。在实验中,我们对每个模糊积分器的高斯、广义贝尔和三角隶属函数参数进行了优化,从而增加了训练的复杂度。仿真结果表明了该方法的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Optimization of the type-1 and interval type-2 fuzzy integrators in Ensembles of ANFIS models for prediction of the Dow Jones time series
This paper describes the optimization of interval type-2 fuzzy integrators in Ensembles of ANFIS (adaptive neuro-fuzzy inferences systems) models for the prediction of the Dow Jones time series. The Dow Jones time series is used to the test of performance of the proposed ensemble architecture. We used the interval type-2 and type-1 fuzzy systems to integrate the output (forecast) of each Ensemble of ANFIS models. Genetic Algorithms (GAs) were used for the optimization of membership function parameters of each interval type-2 fuzzy integrator. In the experiments we optimized Gaussian, Generalized Bell and Triangular membership functions parameter for each of the fuzzy integrators, thereby increasing the complexity of the training. Simulation results show the effectiveness of the proposed approach.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信