使用随机森林回归预测网络文章的受欢迎程度

R. Shreyas, D. Akshata, B. S. Mahanand, B. Shagun, C. Abhishek
{"title":"使用随机森林回归预测网络文章的受欢迎程度","authors":"R. Shreyas, D. Akshata, B. S. Mahanand, B. Shagun, C. Abhishek","doi":"10.1109/CCIP.2016.7802890","DOIUrl":null,"url":null,"abstract":"Predictive analysis using machine learning has been gaining popularity in recent times. In this paper, the Random Forest regression model is used to predict popularity of articles from the Online News Popularity data set. The performance of the Random Forest model is investigated and compared with other models. Impact of standardization, regularization, correlation, high bias/high variance and feature selection on the learning models are also studied. Results indicate that, the Random Forest approach predicts popular/unpopular articles with an accuracy of 88.8%.","PeriodicalId":354589,"journal":{"name":"2016 Second International Conference on Cognitive Computing and Information Processing (CCIP)","volume":"4 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"22","resultStr":"{\"title\":\"Predicting popularity of online articles using Random Forest regression\",\"authors\":\"R. Shreyas, D. Akshata, B. S. Mahanand, B. Shagun, C. Abhishek\",\"doi\":\"10.1109/CCIP.2016.7802890\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Predictive analysis using machine learning has been gaining popularity in recent times. In this paper, the Random Forest regression model is used to predict popularity of articles from the Online News Popularity data set. The performance of the Random Forest model is investigated and compared with other models. Impact of standardization, regularization, correlation, high bias/high variance and feature selection on the learning models are also studied. Results indicate that, the Random Forest approach predicts popular/unpopular articles with an accuracy of 88.8%.\",\"PeriodicalId\":354589,\"journal\":{\"name\":\"2016 Second International Conference on Cognitive Computing and Information Processing (CCIP)\",\"volume\":\"4 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2016-08-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"22\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2016 Second International Conference on Cognitive Computing and Information Processing (CCIP)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/CCIP.2016.7802890\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 Second International Conference on Cognitive Computing and Information Processing (CCIP)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CCIP.2016.7802890","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 22

摘要

近年来,使用机器学习的预测分析越来越受欢迎。本文采用随机森林回归模型对在线新闻流行度数据集中文章的流行度进行预测。研究了随机森林模型的性能,并与其他模型进行了比较。研究了标准化、正则化、相关性、高偏差/高方差和特征选择对学习模型的影响。结果表明,随机森林方法预测流行/不流行文章的准确率为88.8%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Predicting popularity of online articles using Random Forest regression
Predictive analysis using machine learning has been gaining popularity in recent times. In this paper, the Random Forest regression model is used to predict popularity of articles from the Online News Popularity data set. The performance of the Random Forest model is investigated and compared with other models. Impact of standardization, regularization, correlation, high bias/high variance and feature selection on the learning models are also studied. Results indicate that, the Random Forest approach predicts popular/unpopular articles with an accuracy of 88.8%.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信