基于人工神经网络的双目立体视觉摄像机标定及其应用

J. Sun, Yuzhong Ma, Han Yang, Xinglong Zhu
{"title":"基于人工神经网络的双目立体视觉摄像机标定及其应用","authors":"J. Sun, Yuzhong Ma, Han Yang, Xinglong Zhu","doi":"10.1109/CISP-BMEI.2016.7852811","DOIUrl":null,"url":null,"abstract":"The trajectory tracking system of particle motion on sieve surface was designed by the combination of the analysis of image sequences based on binocular stereo vision and three-dimensional position reconstruction based on artificial neural network. Firstly, the calibration plane with uniformly distributed solid circles was placed in multiple positions within the effective field of view. The images of the calibration plane in each position can be captured by the binocular stereo vision system. Then, after image processing, the two-dimensional coordinates of the center of the circles were used as the input sample set for training. The artificial neural network was used to establish an implicit vision model. By this model, the three-dimensional position of the materials can be acquired without any complex camera calibration operation. Lastly, experiments showed that the proposed scheme is feasible, which will provide a good basis for further research.","PeriodicalId":275095,"journal":{"name":"2016 9th International Congress on Image and Signal Processing, BioMedical Engineering and Informatics (CISP-BMEI)","volume":"77 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":"{\"title\":\"Camera calibration and its application of binocular stereo vision based on artificial neural network\",\"authors\":\"J. Sun, Yuzhong Ma, Han Yang, Xinglong Zhu\",\"doi\":\"10.1109/CISP-BMEI.2016.7852811\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The trajectory tracking system of particle motion on sieve surface was designed by the combination of the analysis of image sequences based on binocular stereo vision and three-dimensional position reconstruction based on artificial neural network. Firstly, the calibration plane with uniformly distributed solid circles was placed in multiple positions within the effective field of view. The images of the calibration plane in each position can be captured by the binocular stereo vision system. Then, after image processing, the two-dimensional coordinates of the center of the circles were used as the input sample set for training. The artificial neural network was used to establish an implicit vision model. By this model, the three-dimensional position of the materials can be acquired without any complex camera calibration operation. Lastly, experiments showed that the proposed scheme is feasible, which will provide a good basis for further research.\",\"PeriodicalId\":275095,\"journal\":{\"name\":\"2016 9th International Congress on Image and Signal Processing, BioMedical Engineering and Informatics (CISP-BMEI)\",\"volume\":\"77 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2016-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"7\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2016 9th International Congress on Image and Signal Processing, BioMedical Engineering and Informatics (CISP-BMEI)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/CISP-BMEI.2016.7852811\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 9th International Congress on Image and Signal Processing, BioMedical Engineering and Informatics (CISP-BMEI)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CISP-BMEI.2016.7852811","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 7

摘要

将基于双目立体视觉的图像序列分析与基于人工神经网络的三维位置重建相结合,设计了筛网表面颗粒运动轨迹跟踪系统。首先,在有效视场内多个位置放置均匀分布的实心圆标定平面;双目立体视觉系统可以捕获标定平面在每个位置的图像。然后,经过图像处理后,以圆心的二维坐标作为输入样本集进行训练。利用人工神经网络建立隐式视觉模型。通过该模型,无需进行复杂的相机标定操作即可获得材料的三维位置。最后,通过实验验证了该方案的可行性,为后续的研究提供了良好的基础。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Camera calibration and its application of binocular stereo vision based on artificial neural network
The trajectory tracking system of particle motion on sieve surface was designed by the combination of the analysis of image sequences based on binocular stereo vision and three-dimensional position reconstruction based on artificial neural network. Firstly, the calibration plane with uniformly distributed solid circles was placed in multiple positions within the effective field of view. The images of the calibration plane in each position can be captured by the binocular stereo vision system. Then, after image processing, the two-dimensional coordinates of the center of the circles were used as the input sample set for training. The artificial neural network was used to establish an implicit vision model. By this model, the three-dimensional position of the materials can be acquired without any complex camera calibration operation. Lastly, experiments showed that the proposed scheme is feasible, which will provide a good basis for further research.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信