Zouhair Diab, M. T. de Bustos, M. A. López, R. Martínez
{"title":"扰动全局等时中心的极限环","authors":"Zouhair Diab, M. T. de Bustos, M. A. López, R. Martínez","doi":"10.17993/3ctecno.2022.v11n2e42.25-36","DOIUrl":null,"url":null,"abstract":"We apply the averaging method of first order to study the maximum number of limit cycles of the ordinary differential systems of the form ¨x + x = ε (f1(x, y)y + f2 (x, y)) , ¨y + y = ε (g1(x, y)x + g2 (x, y)) , where f1(x, y) and g1(x, y) are real cubic polynomials; f2(x, y) and g2(x, y) are real quadratic polynomials. Furthermore ε is a small parameter.","PeriodicalId":210685,"journal":{"name":"3C Tecnología_Glosas de innovación aplicadas a la pyme","volume":"6 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-12-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Limit cycles of perturbed global isochronous center\",\"authors\":\"Zouhair Diab, M. T. de Bustos, M. A. López, R. Martínez\",\"doi\":\"10.17993/3ctecno.2022.v11n2e42.25-36\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We apply the averaging method of first order to study the maximum number of limit cycles of the ordinary differential systems of the form ¨x + x = ε (f1(x, y)y + f2 (x, y)) , ¨y + y = ε (g1(x, y)x + g2 (x, y)) , where f1(x, y) and g1(x, y) are real cubic polynomials; f2(x, y) and g2(x, y) are real quadratic polynomials. Furthermore ε is a small parameter.\",\"PeriodicalId\":210685,\"journal\":{\"name\":\"3C Tecnología_Glosas de innovación aplicadas a la pyme\",\"volume\":\"6 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-12-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"3C Tecnología_Glosas de innovación aplicadas a la pyme\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.17993/3ctecno.2022.v11n2e42.25-36\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"3C Tecnología_Glosas de innovación aplicadas a la pyme","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.17993/3ctecno.2022.v11n2e42.25-36","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Limit cycles of perturbed global isochronous center
We apply the averaging method of first order to study the maximum number of limit cycles of the ordinary differential systems of the form ¨x + x = ε (f1(x, y)y + f2 (x, y)) , ¨y + y = ε (g1(x, y)x + g2 (x, y)) , where f1(x, y) and g1(x, y) are real cubic polynomials; f2(x, y) and g2(x, y) are real quadratic polynomials. Furthermore ε is a small parameter.