扰动全局等时中心的极限环

Zouhair Diab, M. T. de Bustos, M. A. López, R. Martínez
{"title":"扰动全局等时中心的极限环","authors":"Zouhair Diab, M. T. de Bustos, M. A. López, R. Martínez","doi":"10.17993/3ctecno.2022.v11n2e42.25-36","DOIUrl":null,"url":null,"abstract":"We apply the averaging method of first order to study the maximum number of limit cycles of the ordinary differential systems of the form ¨x + x = ε (f1(x, y)y + f2 (x, y)) , ¨y + y = ε (g1(x, y)x + g2 (x, y)) , where f1(x, y) and g1(x, y) are real cubic polynomials; f2(x, y) and g2(x, y) are real quadratic polynomials. Furthermore ε is a small parameter.","PeriodicalId":210685,"journal":{"name":"3C Tecnología_Glosas de innovación aplicadas a la pyme","volume":"6 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-12-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Limit cycles of perturbed global isochronous center\",\"authors\":\"Zouhair Diab, M. T. de Bustos, M. A. López, R. Martínez\",\"doi\":\"10.17993/3ctecno.2022.v11n2e42.25-36\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We apply the averaging method of first order to study the maximum number of limit cycles of the ordinary differential systems of the form ¨x + x = ε (f1(x, y)y + f2 (x, y)) , ¨y + y = ε (g1(x, y)x + g2 (x, y)) , where f1(x, y) and g1(x, y) are real cubic polynomials; f2(x, y) and g2(x, y) are real quadratic polynomials. Furthermore ε is a small parameter.\",\"PeriodicalId\":210685,\"journal\":{\"name\":\"3C Tecnología_Glosas de innovación aplicadas a la pyme\",\"volume\":\"6 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-12-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"3C Tecnología_Glosas de innovación aplicadas a la pyme\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.17993/3ctecno.2022.v11n2e42.25-36\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"3C Tecnología_Glosas de innovación aplicadas a la pyme","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.17993/3ctecno.2022.v11n2e42.25-36","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

本文应用一阶平均法研究了一类常微分系统的极限环的最大个数:¨x + x = ε (f1(x, y)y + f2 (x, y)),¨y + y = ε (g1(x, y)x + g2 (x, y)),其中f1(x, y)和g1(x, y)是实三次多项式;F2 (x, y)和g2(x, y)是实数二次多项式。而且ε是一个很小的参数。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Limit cycles of perturbed global isochronous center
We apply the averaging method of first order to study the maximum number of limit cycles of the ordinary differential systems of the form ¨x + x = ε (f1(x, y)y + f2 (x, y)) , ¨y + y = ε (g1(x, y)x + g2 (x, y)) , where f1(x, y) and g1(x, y) are real cubic polynomials; f2(x, y) and g2(x, y) are real quadratic polynomials. Furthermore ε is a small parameter.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信