{"title":"用于决策趋势分析的交互式散点图度量可视化","authors":"Tze-Haw Huang, M. Huang, Kang Zhang","doi":"10.1109/ICMLA.2012.164","DOIUrl":null,"url":null,"abstract":"This paper presents a new interactive scatter plot visualization for multi-dimensional data analysis. We apply RST to reduce the visual complexity through dimensionality reduction. We use an innovative point-to-region mouse click concept to enable direct interactions with scatter points that are theoretically impossible. To show the decision trend we use a virtual Z dimension to display a set of linear flows showing approximation of the decision trend. We have conducted a case study to demonstrate the effectiveness and usefulness of our new technique for identifying the impact sources of wine quality through the visual analytics of a wine dataset consisting of 12 attributes with 4898 samples.","PeriodicalId":157399,"journal":{"name":"2012 11th International Conference on Machine Learning and Applications","volume":"28 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2012-12-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"11","resultStr":"{\"title\":\"An Interactive Scatter Plot Metrics Visualization for Decision Trend Analysis\",\"authors\":\"Tze-Haw Huang, M. Huang, Kang Zhang\",\"doi\":\"10.1109/ICMLA.2012.164\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper presents a new interactive scatter plot visualization for multi-dimensional data analysis. We apply RST to reduce the visual complexity through dimensionality reduction. We use an innovative point-to-region mouse click concept to enable direct interactions with scatter points that are theoretically impossible. To show the decision trend we use a virtual Z dimension to display a set of linear flows showing approximation of the decision trend. We have conducted a case study to demonstrate the effectiveness and usefulness of our new technique for identifying the impact sources of wine quality through the visual analytics of a wine dataset consisting of 12 attributes with 4898 samples.\",\"PeriodicalId\":157399,\"journal\":{\"name\":\"2012 11th International Conference on Machine Learning and Applications\",\"volume\":\"28 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2012-12-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"11\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2012 11th International Conference on Machine Learning and Applications\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICMLA.2012.164\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2012 11th International Conference on Machine Learning and Applications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICMLA.2012.164","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
An Interactive Scatter Plot Metrics Visualization for Decision Trend Analysis
This paper presents a new interactive scatter plot visualization for multi-dimensional data analysis. We apply RST to reduce the visual complexity through dimensionality reduction. We use an innovative point-to-region mouse click concept to enable direct interactions with scatter points that are theoretically impossible. To show the decision trend we use a virtual Z dimension to display a set of linear flows showing approximation of the decision trend. We have conducted a case study to demonstrate the effectiveness and usefulness of our new technique for identifying the impact sources of wine quality through the visual analytics of a wine dataset consisting of 12 attributes with 4898 samples.