{"title":"基于位错图的超细晶化多尺度晶体塑性模拟","authors":"Y. Aoyagi, Ryotaro Kobayashi, K. Shizawa","doi":"10.1299/KIKAIA.77.448","DOIUrl":null,"url":null,"abstract":"Ultrafine-grained metals whose grain size is less than one micron have attracted interest as high strength materials. However, a mechanism of ultrafine-graining based on evolution of dislocation structures has not been clarified. In this study, we derive reaction-diffusion equations for dislocation patterning of dislocation cell structures and subgrains. In order to express the generation of dislocation pattern responding to deformation progress, information of slip rate and stress and effect of interactions between slip systems on formation of cell structures are introduced into the reaction rate coefficients of reaction-diffusion equations. Moreover, we propose a multiscale crystal plasticity model based on dislocation patterning. Then we carry out two-dimensional FE-FD simulation for severe compression of FCC polycrystal using the present model. Some processes of ultrafine-graining, i.e., generation of dislocation cell structures, subgrains, dense dislocation walls and lamella subdivisions with high angle boundary is numerically reproduced, and we investigate the effect of dislocation behaviors on the processes of ultrafine-graining.","PeriodicalId":388675,"journal":{"name":"Transactions of the Japan Society of Mechanical Engineers. A","volume":"27 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2011-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"A multiscale crystal plasticity simulation on ultrafine-graining based on dislocation patterning\",\"authors\":\"Y. Aoyagi, Ryotaro Kobayashi, K. Shizawa\",\"doi\":\"10.1299/KIKAIA.77.448\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Ultrafine-grained metals whose grain size is less than one micron have attracted interest as high strength materials. However, a mechanism of ultrafine-graining based on evolution of dislocation structures has not been clarified. In this study, we derive reaction-diffusion equations for dislocation patterning of dislocation cell structures and subgrains. In order to express the generation of dislocation pattern responding to deformation progress, information of slip rate and stress and effect of interactions between slip systems on formation of cell structures are introduced into the reaction rate coefficients of reaction-diffusion equations. Moreover, we propose a multiscale crystal plasticity model based on dislocation patterning. Then we carry out two-dimensional FE-FD simulation for severe compression of FCC polycrystal using the present model. Some processes of ultrafine-graining, i.e., generation of dislocation cell structures, subgrains, dense dislocation walls and lamella subdivisions with high angle boundary is numerically reproduced, and we investigate the effect of dislocation behaviors on the processes of ultrafine-graining.\",\"PeriodicalId\":388675,\"journal\":{\"name\":\"Transactions of the Japan Society of Mechanical Engineers. A\",\"volume\":\"27 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2011-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Transactions of the Japan Society of Mechanical Engineers. A\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1299/KIKAIA.77.448\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Transactions of the Japan Society of Mechanical Engineers. A","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1299/KIKAIA.77.448","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
A multiscale crystal plasticity simulation on ultrafine-graining based on dislocation patterning
Ultrafine-grained metals whose grain size is less than one micron have attracted interest as high strength materials. However, a mechanism of ultrafine-graining based on evolution of dislocation structures has not been clarified. In this study, we derive reaction-diffusion equations for dislocation patterning of dislocation cell structures and subgrains. In order to express the generation of dislocation pattern responding to deformation progress, information of slip rate and stress and effect of interactions between slip systems on formation of cell structures are introduced into the reaction rate coefficients of reaction-diffusion equations. Moreover, we propose a multiscale crystal plasticity model based on dislocation patterning. Then we carry out two-dimensional FE-FD simulation for severe compression of FCC polycrystal using the present model. Some processes of ultrafine-graining, i.e., generation of dislocation cell structures, subgrains, dense dislocation walls and lamella subdivisions with high angle boundary is numerically reproduced, and we investigate the effect of dislocation behaviors on the processes of ultrafine-graining.