I. Berzina, Raivis Bēts, J. Buls, Edmunds Cers, Liga Kulesa
{"title":"非周期收缩发生器","authors":"I. Berzina, Raivis Bēts, J. Buls, Edmunds Cers, Liga Kulesa","doi":"10.1109/SYNASC.2011.25","DOIUrl":null,"url":null,"abstract":"We present a new non-periodic random number generator based on the shrinking generator. The A-sequence is still generated using a LFSR, but the S-sequence is replaced by a finitely generated bi-ideal - a non-periodic sequence. The resulting pseudo-random sequence performs well in statistical tests. We show a method for the construction of an infinite number of finitely generated bi-ideals from a given A-sequence, such that the resulting sequence of the shrinking generator is nonperiodic. Further we prove the existence of what we call universal finitely generated bi-ideals that produce non-periodic words when used as the S-sequence of a shrinking generator for all non-trivial periodic A-sequences.","PeriodicalId":184344,"journal":{"name":"2011 13th International Symposium on Symbolic and Numeric Algorithms for Scientific Computing","volume":"16 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2011-09-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":"{\"title\":\"On a Non-periodic Shrinking Generator\",\"authors\":\"I. Berzina, Raivis Bēts, J. Buls, Edmunds Cers, Liga Kulesa\",\"doi\":\"10.1109/SYNASC.2011.25\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We present a new non-periodic random number generator based on the shrinking generator. The A-sequence is still generated using a LFSR, but the S-sequence is replaced by a finitely generated bi-ideal - a non-periodic sequence. The resulting pseudo-random sequence performs well in statistical tests. We show a method for the construction of an infinite number of finitely generated bi-ideals from a given A-sequence, such that the resulting sequence of the shrinking generator is nonperiodic. Further we prove the existence of what we call universal finitely generated bi-ideals that produce non-periodic words when used as the S-sequence of a shrinking generator for all non-trivial periodic A-sequences.\",\"PeriodicalId\":184344,\"journal\":{\"name\":\"2011 13th International Symposium on Symbolic and Numeric Algorithms for Scientific Computing\",\"volume\":\"16 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2011-09-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"5\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2011 13th International Symposium on Symbolic and Numeric Algorithms for Scientific Computing\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/SYNASC.2011.25\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2011 13th International Symposium on Symbolic and Numeric Algorithms for Scientific Computing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SYNASC.2011.25","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
We present a new non-periodic random number generator based on the shrinking generator. The A-sequence is still generated using a LFSR, but the S-sequence is replaced by a finitely generated bi-ideal - a non-periodic sequence. The resulting pseudo-random sequence performs well in statistical tests. We show a method for the construction of an infinite number of finitely generated bi-ideals from a given A-sequence, such that the resulting sequence of the shrinking generator is nonperiodic. Further we prove the existence of what we call universal finitely generated bi-ideals that produce non-periodic words when used as the S-sequence of a shrinking generator for all non-trivial periodic A-sequences.