基于机器学习的PCA遗传算法在脑电图中的癫痫发作分类

Md Khurram Monir Rabby, A. Islam, S. Belkasim, M. Bikdash
{"title":"基于机器学习的PCA遗传算法在脑电图中的癫痫发作分类","authors":"Md Khurram Monir Rabby, A. Islam, S. Belkasim, M. Bikdash","doi":"10.1145/3409334.3452065","DOIUrl":null,"url":null,"abstract":"In this research, a Principal Component Analysis (PCA) with Genetic Algorithm based Machine Learning (ML) approach is developed for the binary classification of epileptic seizures from the EEG dataset. The proposed approach utilizes PCA to reduce the number of features for binary classification of epileptic seizures and is applied to the existing machine learning models to evaluate the model performance in comparison to the higher number of features. Here, Genetic Algorithm (GA) is employed to tune the hyperparameters of the machine learning models for identifying the best ML model. The proposed approach is applied to the UCI epileptic seizure recognition dataset, which is originated from the EEG dataset of Bonn University. As a preliminary analysis of the proposed approach, the data analysis result shows a significant reduction in the number of features but has minimal impact on the ML performance parameters in comparison to the existing ML method.","PeriodicalId":148741,"journal":{"name":"Proceedings of the 2021 ACM Southeast Conference","volume":"30 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-04-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"9","resultStr":"{\"title\":\"Epileptic seizures classification in EEG using PCA based genetic algorithm through machine learning\",\"authors\":\"Md Khurram Monir Rabby, A. Islam, S. Belkasim, M. Bikdash\",\"doi\":\"10.1145/3409334.3452065\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this research, a Principal Component Analysis (PCA) with Genetic Algorithm based Machine Learning (ML) approach is developed for the binary classification of epileptic seizures from the EEG dataset. The proposed approach utilizes PCA to reduce the number of features for binary classification of epileptic seizures and is applied to the existing machine learning models to evaluate the model performance in comparison to the higher number of features. Here, Genetic Algorithm (GA) is employed to tune the hyperparameters of the machine learning models for identifying the best ML model. The proposed approach is applied to the UCI epileptic seizure recognition dataset, which is originated from the EEG dataset of Bonn University. As a preliminary analysis of the proposed approach, the data analysis result shows a significant reduction in the number of features but has minimal impact on the ML performance parameters in comparison to the existing ML method.\",\"PeriodicalId\":148741,\"journal\":{\"name\":\"Proceedings of the 2021 ACM Southeast Conference\",\"volume\":\"30 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-04-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"9\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 2021 ACM Southeast Conference\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3409334.3452065\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 2021 ACM Southeast Conference","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3409334.3452065","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 9

摘要

本研究提出了一种基于遗传算法的主成分分析(PCA)和机器学习(ML)方法,用于脑电图数据集中癫痫发作的二分类。该方法利用PCA来减少癫痫发作二分类的特征数量,并将其应用于现有的机器学习模型中,与更高数量的特征进行比较,以评估模型的性能。本文采用遗传算法(GA)对机器学习模型的超参数进行调整,以识别最佳的机器学习模型。该方法应用于UCI癫痫发作识别数据集,该数据集来源于德国波恩大学的脑电图数据集。作为对该方法的初步分析,数据分析结果显示,与现有的机器学习方法相比,特征数量显著减少,但对机器学习性能参数的影响最小。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Epileptic seizures classification in EEG using PCA based genetic algorithm through machine learning
In this research, a Principal Component Analysis (PCA) with Genetic Algorithm based Machine Learning (ML) approach is developed for the binary classification of epileptic seizures from the EEG dataset. The proposed approach utilizes PCA to reduce the number of features for binary classification of epileptic seizures and is applied to the existing machine learning models to evaluate the model performance in comparison to the higher number of features. Here, Genetic Algorithm (GA) is employed to tune the hyperparameters of the machine learning models for identifying the best ML model. The proposed approach is applied to the UCI epileptic seizure recognition dataset, which is originated from the EEG dataset of Bonn University. As a preliminary analysis of the proposed approach, the data analysis result shows a significant reduction in the number of features but has minimal impact on the ML performance parameters in comparison to the existing ML method.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信