刚性和非刚性目标跟踪的泄漏积分-放电神经元模型

H. Yedjour, Boudjelal Meftah, Dounia Yedjour, A. Benyettou
{"title":"刚性和非刚性目标跟踪的泄漏积分-放电神经元模型","authors":"H. Yedjour, Boudjelal Meftah, Dounia Yedjour, A. Benyettou","doi":"10.1145/3330089.3330096","DOIUrl":null,"url":null,"abstract":"Spiking neural networks (SNNs) fall into the third generation of artificial neural network models, increasing the level of realism in a neural simulation. In this paper, a spiking neural network is presented for detecting and tracking of a moving object in video sequences with a static camera. The motion estimation of the object is carried out by minimizing a Hausdorff distance measure. The system has been successfully tested with various real video sequences. The results showed that our system can track the identified target over subsequent video frames even in occlusion case.","PeriodicalId":251275,"journal":{"name":"Proceedings of the 7th International Conference on Software Engineering and New Technologies","volume":"2010 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-12-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":"{\"title\":\"The leaky integrate-and-fire neuron model for a rigid and a non-rigid object tracking\",\"authors\":\"H. Yedjour, Boudjelal Meftah, Dounia Yedjour, A. Benyettou\",\"doi\":\"10.1145/3330089.3330096\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Spiking neural networks (SNNs) fall into the third generation of artificial neural network models, increasing the level of realism in a neural simulation. In this paper, a spiking neural network is presented for detecting and tracking of a moving object in video sequences with a static camera. The motion estimation of the object is carried out by minimizing a Hausdorff distance measure. The system has been successfully tested with various real video sequences. The results showed that our system can track the identified target over subsequent video frames even in occlusion case.\",\"PeriodicalId\":251275,\"journal\":{\"name\":\"Proceedings of the 7th International Conference on Software Engineering and New Technologies\",\"volume\":\"2010 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-12-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"7\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 7th International Conference on Software Engineering and New Technologies\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3330089.3330096\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 7th International Conference on Software Engineering and New Technologies","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3330089.3330096","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 7

摘要

脉冲神经网络(snn)是第三代人工神经网络模型,提高了神经仿真的真实感。本文提出了一种基于脉冲神经网络的静态摄像机视频序列中运动目标的检测与跟踪方法。目标的运动估计是通过最小化豪斯多夫距离来实现的。该系统已成功地对各种真实视频序列进行了测试。结果表明,即使在遮挡的情况下,我们的系统也可以在后续视频帧中跟踪识别的目标。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
The leaky integrate-and-fire neuron model for a rigid and a non-rigid object tracking
Spiking neural networks (SNNs) fall into the third generation of artificial neural network models, increasing the level of realism in a neural simulation. In this paper, a spiking neural network is presented for detecting and tracking of a moving object in video sequences with a static camera. The motion estimation of the object is carried out by minimizing a Hausdorff distance measure. The system has been successfully tested with various real video sequences. The results showed that our system can track the identified target over subsequent video frames even in occlusion case.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信