缅甸信息检索的文本压缩

N. Lin, A. KudinovVitaly, Y. Soe
{"title":"缅甸信息检索的文本压缩","authors":"N. Lin, A. KudinovVitaly, Y. Soe","doi":"10.1145/3342827.3342830","DOIUrl":null,"url":null,"abstract":"Myanmar word segmentation is an important task for construction of dictionary file for Myanmar information retrieval and Myanmar text compression. Although Myanmar word segmentation using dictionary and orthography has been existed for Myanmar language, the performance of word segmentation depends on the coverage of the dictionary and training dataset and can cause out of vocabulary (OOV) problem, leading to lower precision and recall in information retrieval. And to compress Myanmar text, words in text needs to be recognized first. In this paper, we propose a new method for Myanmar word segmentation by local statistical dataset without the use of any additional data (e.g., training corpus) and new compressed Myanmar Information Retrieval (MIR) model which used End Tagged Dense Code (ETDC) text compressed method. The experimental results showed that the method can improve evaluation of vocabulary file with precision 75%, recall 87%, F-measure 80% and average compression ratio is 32% of texts for Myanmar language.","PeriodicalId":254461,"journal":{"name":"Proceedings of the 2019 3rd International Conference on Natural Language Processing and Information Retrieval","volume":"26 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-06-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Text Compression for Myanmar Information Retrieval\",\"authors\":\"N. Lin, A. KudinovVitaly, Y. Soe\",\"doi\":\"10.1145/3342827.3342830\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Myanmar word segmentation is an important task for construction of dictionary file for Myanmar information retrieval and Myanmar text compression. Although Myanmar word segmentation using dictionary and orthography has been existed for Myanmar language, the performance of word segmentation depends on the coverage of the dictionary and training dataset and can cause out of vocabulary (OOV) problem, leading to lower precision and recall in information retrieval. And to compress Myanmar text, words in text needs to be recognized first. In this paper, we propose a new method for Myanmar word segmentation by local statistical dataset without the use of any additional data (e.g., training corpus) and new compressed Myanmar Information Retrieval (MIR) model which used End Tagged Dense Code (ETDC) text compressed method. The experimental results showed that the method can improve evaluation of vocabulary file with precision 75%, recall 87%, F-measure 80% and average compression ratio is 32% of texts for Myanmar language.\",\"PeriodicalId\":254461,\"journal\":{\"name\":\"Proceedings of the 2019 3rd International Conference on Natural Language Processing and Information Retrieval\",\"volume\":\"26 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-06-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 2019 3rd International Conference on Natural Language Processing and Information Retrieval\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3342827.3342830\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 2019 3rd International Conference on Natural Language Processing and Information Retrieval","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3342827.3342830","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

缅语分词是缅语信息检索和缅语文本压缩中构建字典文件的重要任务。虽然目前已有使用字典和正字法对缅甸语进行分词的方法,但分词的性能依赖于字典和训练数据集的覆盖范围,并且会导致词汇量不足(OOV)问题,导致信息检索的准确率和查全率较低。而要压缩缅文文本,首先需要对文本中的单词进行识别。本文提出了一种不使用任何额外数据(如训练语料库)的局部统计数据的缅甸语分词新方法,并提出了一种新的压缩缅甸语信息检索(MIR)模型,该模型使用了End Tagged Dense Code (ETDC)文本压缩方法。实验结果表明,该方法对缅甸语文本的词汇文件评价精度达到75%,查全率达到87%,F-measure达到80%,平均压缩比达到32%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Text Compression for Myanmar Information Retrieval
Myanmar word segmentation is an important task for construction of dictionary file for Myanmar information retrieval and Myanmar text compression. Although Myanmar word segmentation using dictionary and orthography has been existed for Myanmar language, the performance of word segmentation depends on the coverage of the dictionary and training dataset and can cause out of vocabulary (OOV) problem, leading to lower precision and recall in information retrieval. And to compress Myanmar text, words in text needs to be recognized first. In this paper, we propose a new method for Myanmar word segmentation by local statistical dataset without the use of any additional data (e.g., training corpus) and new compressed Myanmar Information Retrieval (MIR) model which used End Tagged Dense Code (ETDC) text compressed method. The experimental results showed that the method can improve evaluation of vocabulary file with precision 75%, recall 87%, F-measure 80% and average compression ratio is 32% of texts for Myanmar language.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信