工艺参数变化对45nm NMOS器件阈值电压的影响

F. Salehuddin, I. Ahmad, F. A. Hamid, A. Zaharim
{"title":"工艺参数变化对45nm NMOS器件阈值电压的影响","authors":"F. Salehuddin, I. Ahmad, F. A. Hamid, A. Zaharim","doi":"10.1109/SCORED.2010.5704034","DOIUrl":null,"url":null,"abstract":"Taguchi method was used to optimize of the effect process parameter variations on threshold voltage in 45nm NMOS device. In this paper, there are four process parameters (factors) were used, which are Halo Implantation, Source/Drain (S/D) Implantation, Oxide Growth Temperature and Silicide Anneal temperature. The virtual fabrication of the devices was performed by using ATHENA module. While the electrical characterization of the devices was implemented by using ATLAS module. These two modules were combined with Taguchi method to aid in design and optimizer the process parameters. Threshold voltage (VTH) results were used as the evaluation variables. The results were then subjected to the Taguchi method to determine the optimal process parameters and to produce predicted values. The predicted values of the process parameters were then successfully verified with ATHENA and ATLAS's simulator. In this research, oxide growth temperature was identified as one of the process parameters that has the strongest effect on the response characteristics. While the S/D Implantation was identified as adjustment factor to get the nominal values of threshold voltage for NMOS device equal to 0.15V.","PeriodicalId":277771,"journal":{"name":"2010 IEEE Student Conference on Research and Development (SCOReD)","volume":"28 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2010-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":"{\"title\":\"Effect of process parameter variations on threshold voltage in 45nm NMOS device\",\"authors\":\"F. Salehuddin, I. Ahmad, F. A. Hamid, A. Zaharim\",\"doi\":\"10.1109/SCORED.2010.5704034\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Taguchi method was used to optimize of the effect process parameter variations on threshold voltage in 45nm NMOS device. In this paper, there are four process parameters (factors) were used, which are Halo Implantation, Source/Drain (S/D) Implantation, Oxide Growth Temperature and Silicide Anneal temperature. The virtual fabrication of the devices was performed by using ATHENA module. While the electrical characterization of the devices was implemented by using ATLAS module. These two modules were combined with Taguchi method to aid in design and optimizer the process parameters. Threshold voltage (VTH) results were used as the evaluation variables. The results were then subjected to the Taguchi method to determine the optimal process parameters and to produce predicted values. The predicted values of the process parameters were then successfully verified with ATHENA and ATLAS's simulator. In this research, oxide growth temperature was identified as one of the process parameters that has the strongest effect on the response characteristics. While the S/D Implantation was identified as adjustment factor to get the nominal values of threshold voltage for NMOS device equal to 0.15V.\",\"PeriodicalId\":277771,\"journal\":{\"name\":\"2010 IEEE Student Conference on Research and Development (SCOReD)\",\"volume\":\"28 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2010-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"5\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2010 IEEE Student Conference on Research and Development (SCOReD)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/SCORED.2010.5704034\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2010 IEEE Student Conference on Research and Development (SCOReD)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SCORED.2010.5704034","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5

摘要

采用田口法优化工艺参数变化对45nm NMOS器件阈值电压的影响。本文采用了光晕注入、源/漏(S/D)注入、氧化物生长温度和硅化物退火温度四个工艺参数(因素)。利用ATHENA模块实现了器件的虚拟制造。同时利用ATLAS模块对器件进行电学表征。将这两个模块与田口法相结合,帮助设计和优化工艺参数。阈值电压(VTH)结果作为评价变量。然后将结果应用田口法确定最佳工艺参数并产生预测值。然后用ATHENA和ATLAS的模拟器成功地验证了工艺参数的预测值。在本研究中,氧化物生长温度被确定为对响应特性影响最大的工艺参数之一。将S/D注入作为调整因子,得到NMOS器件的标称阈值为0.15V。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Effect of process parameter variations on threshold voltage in 45nm NMOS device
Taguchi method was used to optimize of the effect process parameter variations on threshold voltage in 45nm NMOS device. In this paper, there are four process parameters (factors) were used, which are Halo Implantation, Source/Drain (S/D) Implantation, Oxide Growth Temperature and Silicide Anneal temperature. The virtual fabrication of the devices was performed by using ATHENA module. While the electrical characterization of the devices was implemented by using ATLAS module. These two modules were combined with Taguchi method to aid in design and optimizer the process parameters. Threshold voltage (VTH) results were used as the evaluation variables. The results were then subjected to the Taguchi method to determine the optimal process parameters and to produce predicted values. The predicted values of the process parameters were then successfully verified with ATHENA and ATLAS's simulator. In this research, oxide growth temperature was identified as one of the process parameters that has the strongest effect on the response characteristics. While the S/D Implantation was identified as adjustment factor to get the nominal values of threshold voltage for NMOS device equal to 0.15V.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信