{"title":"使用多代理模型的分布式百亿亿级系统中的资源发现:基于其特征的代理分类","authors":"Fakhraddin Abdullayev","doi":"10.32010/26166127.2023.6.1.113.120","DOIUrl":null,"url":null,"abstract":"Resource discovery is a crucial component in high-performance computing (HPC) systems. This paper presents a multi-agent model for resource discovery in distributed exascale systems. Agents are categorized based on resource types and behavior-specific characteristics. The model enables efficient identification and acquisition of memory, process, file, and IO resources. Through a comprehensive exploration, we highlight the potential of our approach in addressing resource discovery challenges in exascale computing systems, paving the way for optimized resource utilization and enhanced system performance.","PeriodicalId":275688,"journal":{"name":"Azerbaijan Journal of High Performance Computing","volume":"2 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-06-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"RESOURCE DISCOVERY IN DISTRIBUTED EXASCALE SYSTEMS USING A MULTI-AGENT MODEL: CATEGORIZATION OF AGENTS BASED ON THEIR CHARACTERISTICS\",\"authors\":\"Fakhraddin Abdullayev\",\"doi\":\"10.32010/26166127.2023.6.1.113.120\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Resource discovery is a crucial component in high-performance computing (HPC) systems. This paper presents a multi-agent model for resource discovery in distributed exascale systems. Agents are categorized based on resource types and behavior-specific characteristics. The model enables efficient identification and acquisition of memory, process, file, and IO resources. Through a comprehensive exploration, we highlight the potential of our approach in addressing resource discovery challenges in exascale computing systems, paving the way for optimized resource utilization and enhanced system performance.\",\"PeriodicalId\":275688,\"journal\":{\"name\":\"Azerbaijan Journal of High Performance Computing\",\"volume\":\"2 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-06-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Azerbaijan Journal of High Performance Computing\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.32010/26166127.2023.6.1.113.120\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Azerbaijan Journal of High Performance Computing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.32010/26166127.2023.6.1.113.120","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
RESOURCE DISCOVERY IN DISTRIBUTED EXASCALE SYSTEMS USING A MULTI-AGENT MODEL: CATEGORIZATION OF AGENTS BASED ON THEIR CHARACTERISTICS
Resource discovery is a crucial component in high-performance computing (HPC) systems. This paper presents a multi-agent model for resource discovery in distributed exascale systems. Agents are categorized based on resource types and behavior-specific characteristics. The model enables efficient identification and acquisition of memory, process, file, and IO resources. Through a comprehensive exploration, we highlight the potential of our approach in addressing resource discovery challenges in exascale computing systems, paving the way for optimized resource utilization and enhanced system performance.