利用自组织网络计算资源加速参数扫描工作流:一个生态实例

Jianwu Wang, I. Altintas, P. Hosseini, D. Barseghian, Daniel Crawl, Chad Berkley, Matthew B. Jones
{"title":"利用自组织网络计算资源加速参数扫描工作流:一个生态实例","authors":"Jianwu Wang, I. Altintas, P. Hosseini, D. Barseghian, Daniel Crawl, Chad Berkley, Matthew B. Jones","doi":"10.1109/SERVICES-I.2009.9","DOIUrl":null,"url":null,"abstract":"Making use of distributed execution within scientific workflows is a growing and promising methodology to achieve better execution performance. We have implemented a distributed execution framework in the Kepler scientific workflow environment, called Master-Slave Distribution, to distribute sub-workflows to a common distributed environment, namely ad-hoc network computing resources. For a typical parameter sweep workflow, this architecture can realize concurrent independent sub-workflow executions with minimal user configuration, allowing large gains in productivity with little of the typical overhead associated with learning distributed computing systems. We explain details of the Master-Slave architecture and demonstrate its usability and time efficiency by a use case in the theoretical ecology domain. We also discuss the capabilities of this architecture under different computational domains in Kepler.","PeriodicalId":159235,"journal":{"name":"2009 Congress on Services - I","volume":"96 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2009-07-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"12","resultStr":"{\"title\":\"Accelerating Parameter Sweep Workflows by Utilizing Ad-hoc Network Computing Resources: An Ecological Example\",\"authors\":\"Jianwu Wang, I. Altintas, P. Hosseini, D. Barseghian, Daniel Crawl, Chad Berkley, Matthew B. Jones\",\"doi\":\"10.1109/SERVICES-I.2009.9\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Making use of distributed execution within scientific workflows is a growing and promising methodology to achieve better execution performance. We have implemented a distributed execution framework in the Kepler scientific workflow environment, called Master-Slave Distribution, to distribute sub-workflows to a common distributed environment, namely ad-hoc network computing resources. For a typical parameter sweep workflow, this architecture can realize concurrent independent sub-workflow executions with minimal user configuration, allowing large gains in productivity with little of the typical overhead associated with learning distributed computing systems. We explain details of the Master-Slave architecture and demonstrate its usability and time efficiency by a use case in the theoretical ecology domain. We also discuss the capabilities of this architecture under different computational domains in Kepler.\",\"PeriodicalId\":159235,\"journal\":{\"name\":\"2009 Congress on Services - I\",\"volume\":\"96 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2009-07-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"12\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2009 Congress on Services - I\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/SERVICES-I.2009.9\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2009 Congress on Services - I","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SERVICES-I.2009.9","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 12

摘要

在科学工作流中使用分布式执行是一种不断发展和有前途的方法,可以实现更好的执行性能。我们在开普勒科学工作流环境中实现了一个分布式执行框架,称为主从分布,将子工作流分发到一个公共的分布式环境,即ad-hoc网络计算资源。对于典型的参数扫描工作流,该体系结构可以用最少的用户配置实现并发的独立子工作流执行,从而在学习分布式计算系统的典型开销很小的情况下,大大提高了生产力。我们解释了主从架构的细节,并通过理论生态学领域的一个用例展示了它的可用性和时间效率。我们还讨论了该架构在开普勒不同计算域下的能力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Accelerating Parameter Sweep Workflows by Utilizing Ad-hoc Network Computing Resources: An Ecological Example
Making use of distributed execution within scientific workflows is a growing and promising methodology to achieve better execution performance. We have implemented a distributed execution framework in the Kepler scientific workflow environment, called Master-Slave Distribution, to distribute sub-workflows to a common distributed environment, namely ad-hoc network computing resources. For a typical parameter sweep workflow, this architecture can realize concurrent independent sub-workflow executions with minimal user configuration, allowing large gains in productivity with little of the typical overhead associated with learning distributed computing systems. We explain details of the Master-Slave architecture and demonstrate its usability and time efficiency by a use case in the theoretical ecology domain. We also discuss the capabilities of this architecture under different computational domains in Kepler.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信