R. G. Narayanan, P. J. Ramulu, Satheeshkumar V., A. K. Agrawal, Sumitesh Das, A. P., V. Namboodiri
{"title":"为轻量化应用和机械性能量身定制的金属结构的制造","authors":"R. G. Narayanan, P. J. Ramulu, Satheeshkumar V., A. K. Agrawal, Sumitesh Das, A. P., V. Namboodiri","doi":"10.4018/978-1-7998-7864-3.ch011","DOIUrl":null,"url":null,"abstract":"Tailor-made metallic structures are fabricated by welding, adhesive bonding, and mechanical joining methods. Here the aim is not only to fabricate lightweight structures, but also to develop novel methods of joining. Lightweight structures are advantageous in several ways including reduction of fuel consumption and vehicle emissions. Developing novel methods of joining is advantageous due to the possibility of joining of dissimilar materials, improved mechanical performance, and microstructures. In the chapter, initially, tailor-welded blanks (TWB) are introduced, and after that, fabrication of TWBs by laser welding, friction stir welding, and friction stir additive manufacturing are elaborately discussed. Some critical issues in modeling the deformation during fabrication of TWBs is also discussed. A brief account of mechanical behavior of adhesive bonded sheets and mechanical joining are presented in the later part.","PeriodicalId":170776,"journal":{"name":"Handbook of Research on Advancements in the Processing, Characterization, and Application of Lightweight Materials","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1900-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Fabrication of Tailor-Made Metallic Structures for Lightweight Applications and Mechanical Behaviour\",\"authors\":\"R. G. Narayanan, P. J. Ramulu, Satheeshkumar V., A. K. Agrawal, Sumitesh Das, A. P., V. Namboodiri\",\"doi\":\"10.4018/978-1-7998-7864-3.ch011\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Tailor-made metallic structures are fabricated by welding, adhesive bonding, and mechanical joining methods. Here the aim is not only to fabricate lightweight structures, but also to develop novel methods of joining. Lightweight structures are advantageous in several ways including reduction of fuel consumption and vehicle emissions. Developing novel methods of joining is advantageous due to the possibility of joining of dissimilar materials, improved mechanical performance, and microstructures. In the chapter, initially, tailor-welded blanks (TWB) are introduced, and after that, fabrication of TWBs by laser welding, friction stir welding, and friction stir additive manufacturing are elaborately discussed. Some critical issues in modeling the deformation during fabrication of TWBs is also discussed. A brief account of mechanical behavior of adhesive bonded sheets and mechanical joining are presented in the later part.\",\"PeriodicalId\":170776,\"journal\":{\"name\":\"Handbook of Research on Advancements in the Processing, Characterization, and Application of Lightweight Materials\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1900-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Handbook of Research on Advancements in the Processing, Characterization, and Application of Lightweight Materials\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.4018/978-1-7998-7864-3.ch011\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Handbook of Research on Advancements in the Processing, Characterization, and Application of Lightweight Materials","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4018/978-1-7998-7864-3.ch011","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Fabrication of Tailor-Made Metallic Structures for Lightweight Applications and Mechanical Behaviour
Tailor-made metallic structures are fabricated by welding, adhesive bonding, and mechanical joining methods. Here the aim is not only to fabricate lightweight structures, but also to develop novel methods of joining. Lightweight structures are advantageous in several ways including reduction of fuel consumption and vehicle emissions. Developing novel methods of joining is advantageous due to the possibility of joining of dissimilar materials, improved mechanical performance, and microstructures. In the chapter, initially, tailor-welded blanks (TWB) are introduced, and after that, fabrication of TWBs by laser welding, friction stir welding, and friction stir additive manufacturing are elaborately discussed. Some critical issues in modeling the deformation during fabrication of TWBs is also discussed. A brief account of mechanical behavior of adhesive bonded sheets and mechanical joining are presented in the later part.