早期预测东努萨省瓦因盖普雨季的方法是阿里马方法

Rama Dani Eka Putra, Amarta Sinardi
{"title":"早期预测东努萨省瓦因盖普雨季的方法是阿里马方法","authors":"Rama Dani Eka Putra, Amarta Sinardi","doi":"10.33884/cbis.v8i1.1769","DOIUrl":null,"url":null,"abstract":"The beginning of the rainy season can be predicted by various methods such as the Autoregressive Integrated Moving Average (ARIMA). Occurrence of the onset of the rainy season (AMH), the erratic impact on various sectors, especially in the agricultural sector often results in crop failure. Therefore, the aim of this study is to improve the accuracy of predictions for the start of the rainy season. In this study daily rainfall data, the beginning of the rainy season data is obtained by calculating daily rainfall data using the Liebmann method. The best ARIMA model (3,1,0) with the equation y = 0,3162−1 + 0,1284−2−0,188−3 + 0,7434−4−0,934 is used for July, August and DMI data in August are considered as input and prediction error value ARIMA as a target. The beginning of the rainy season prediction results based on ARIMA, the results of testing and evaluation obtained values ​​of r = 0.14 and RMSE = 32.53.","PeriodicalId":413767,"journal":{"name":"Computer Based Information System Journal","volume":"14 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-03-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"PREDIKSI AWAL MUSIM HUJAN DI WAINGAPU PROVINSI NUSA TENGGARA TIMUR MENGGUNAKAN METODE ARIMA\",\"authors\":\"Rama Dani Eka Putra, Amarta Sinardi\",\"doi\":\"10.33884/cbis.v8i1.1769\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The beginning of the rainy season can be predicted by various methods such as the Autoregressive Integrated Moving Average (ARIMA). Occurrence of the onset of the rainy season (AMH), the erratic impact on various sectors, especially in the agricultural sector often results in crop failure. Therefore, the aim of this study is to improve the accuracy of predictions for the start of the rainy season. In this study daily rainfall data, the beginning of the rainy season data is obtained by calculating daily rainfall data using the Liebmann method. The best ARIMA model (3,1,0) with the equation y = 0,3162−1 + 0,1284−2−0,188−3 + 0,7434−4−0,934 is used for July, August and DMI data in August are considered as input and prediction error value ARIMA as a target. The beginning of the rainy season prediction results based on ARIMA, the results of testing and evaluation obtained values ​​of r = 0.14 and RMSE = 32.53.\",\"PeriodicalId\":413767,\"journal\":{\"name\":\"Computer Based Information System Journal\",\"volume\":\"14 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-03-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Computer Based Information System Journal\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.33884/cbis.v8i1.1769\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computer Based Information System Journal","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.33884/cbis.v8i1.1769","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

雨季的开始可以用各种方法来预测,如自回归综合移动平均(ARIMA)。雨季(AMH)的到来,对各个部门,特别是农业部门的影响不稳定,往往导致作物歉收。因此,本研究的目的是提高对雨季开始的预测准确性。在本研究的日降雨量数据中,雨季开始的数据是通过使用Liebmann方法计算日降雨量数据得到的。7月、8月采用方程y = 0,3162−1 + 0,1284−2−0,188−3 + 0,7434−4−0,934的最佳ARIMA模型(3,1,0),将8月的DMI数据作为输入,以ARIMA预测误差值为目标。基于ARIMA的雨季初预报结果,检验评价结果r = 0.14, RMSE = 32.53。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
PREDIKSI AWAL MUSIM HUJAN DI WAINGAPU PROVINSI NUSA TENGGARA TIMUR MENGGUNAKAN METODE ARIMA
The beginning of the rainy season can be predicted by various methods such as the Autoregressive Integrated Moving Average (ARIMA). Occurrence of the onset of the rainy season (AMH), the erratic impact on various sectors, especially in the agricultural sector often results in crop failure. Therefore, the aim of this study is to improve the accuracy of predictions for the start of the rainy season. In this study daily rainfall data, the beginning of the rainy season data is obtained by calculating daily rainfall data using the Liebmann method. The best ARIMA model (3,1,0) with the equation y = 0,3162−1 + 0,1284−2−0,188−3 + 0,7434−4−0,934 is used for July, August and DMI data in August are considered as input and prediction error value ARIMA as a target. The beginning of the rainy season prediction results based on ARIMA, the results of testing and evaluation obtained values ​​of r = 0.14 and RMSE = 32.53.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信