基于云的车辆行驶高度控制

Konstantin Riedl, Thomas Einmüller, Andreas Noll, Andreas Allgayer, D. Reitze, M. Lienkamp
{"title":"基于云的车辆行驶高度控制","authors":"Konstantin Riedl, Thomas Einmüller, Andreas Noll, Andreas Allgayer, D. Reitze, M. Lienkamp","doi":"10.1109/ICCVE45908.2019.8964864","DOIUrl":null,"url":null,"abstract":"We present a novel approach for a cloud-based ride-height control for vehicles equipped with an air suspension. The objective of this approach is to improve both efficiency and comfort, especially on single obstacles, by including vehicle-to-vehicle or vehicle-to-infrastructure (V2X) information on the road ahead in the control algorithm. The focus of this paper is the methodology of data processing on a cloud backend and includes three steps: pre-processing, clustering and allocation of streets to the clusters. In the first step, the database is reduced to obstacles relevant for driving comfort. The second step is to find clusters with a high density of obstacles on a road condition map. Finally, the probability of hitting an obstacle is calculated for each road in the area of a cluster, taking the characteristics and the topology of the road network into account. Example data is used to proof the functionality of the method. The proposed method seems to be a suitable approach for big data applications and might improve a vehicle ride-height control with regard to comfort and efficiency.","PeriodicalId":384049,"journal":{"name":"2019 IEEE International Conference on Connected Vehicles and Expo (ICCVE)","volume":"30 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Cloud-Based Vehicle Ride-Height Control\",\"authors\":\"Konstantin Riedl, Thomas Einmüller, Andreas Noll, Andreas Allgayer, D. Reitze, M. Lienkamp\",\"doi\":\"10.1109/ICCVE45908.2019.8964864\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We present a novel approach for a cloud-based ride-height control for vehicles equipped with an air suspension. The objective of this approach is to improve both efficiency and comfort, especially on single obstacles, by including vehicle-to-vehicle or vehicle-to-infrastructure (V2X) information on the road ahead in the control algorithm. The focus of this paper is the methodology of data processing on a cloud backend and includes three steps: pre-processing, clustering and allocation of streets to the clusters. In the first step, the database is reduced to obstacles relevant for driving comfort. The second step is to find clusters with a high density of obstacles on a road condition map. Finally, the probability of hitting an obstacle is calculated for each road in the area of a cluster, taking the characteristics and the topology of the road network into account. Example data is used to proof the functionality of the method. The proposed method seems to be a suitable approach for big data applications and might improve a vehicle ride-height control with regard to comfort and efficiency.\",\"PeriodicalId\":384049,\"journal\":{\"name\":\"2019 IEEE International Conference on Connected Vehicles and Expo (ICCVE)\",\"volume\":\"30 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2019 IEEE International Conference on Connected Vehicles and Expo (ICCVE)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICCVE45908.2019.8964864\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 IEEE International Conference on Connected Vehicles and Expo (ICCVE)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICCVE45908.2019.8964864","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

我们提出了一种基于云计算的车辆高度控制的新方法,用于配备空气悬架的车辆。这种方法的目标是通过在控制算法中包含前方道路上的车对车或车对基础设施(V2X)信息,提高效率和舒适性,特别是在单个障碍物上。本文的重点是云后端的数据处理方法,包括三个步骤:预处理、聚类和将街道分配到聚类。第一步,将数据库简化为与驾驶舒适性相关的障碍。第二步是在路况地图上找到具有高密度障碍物的集群。最后,考虑路网的特征和拓扑结构,计算集群区域内每条道路的撞障概率。示例数据用于证明该方法的功能。该方法似乎是一种适合大数据应用的方法,并可能在舒适性和效率方面改善车辆行驶高度控制。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Cloud-Based Vehicle Ride-Height Control
We present a novel approach for a cloud-based ride-height control for vehicles equipped with an air suspension. The objective of this approach is to improve both efficiency and comfort, especially on single obstacles, by including vehicle-to-vehicle or vehicle-to-infrastructure (V2X) information on the road ahead in the control algorithm. The focus of this paper is the methodology of data processing on a cloud backend and includes three steps: pre-processing, clustering and allocation of streets to the clusters. In the first step, the database is reduced to obstacles relevant for driving comfort. The second step is to find clusters with a high density of obstacles on a road condition map. Finally, the probability of hitting an obstacle is calculated for each road in the area of a cluster, taking the characteristics and the topology of the road network into account. Example data is used to proof the functionality of the method. The proposed method seems to be a suitable approach for big data applications and might improve a vehicle ride-height control with regard to comfort and efficiency.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信