基于直方图和自相似矩阵的网络流量检测

Penglin Yang, Limin Tao, Haitao Wang
{"title":"基于直方图和自相似矩阵的网络流量检测","authors":"Penglin Yang, Limin Tao, Haitao Wang","doi":"10.1145/3209914.3236336","DOIUrl":null,"url":null,"abstract":"This paper introduces a new network traffic detection method to detect network malicious traffic in different network architectures. In most network traffic data sets, training data and testing data have the same network architecture and traffic features, like the same IP address distribution, the same IP port utilization, etc. But in real network detection, feature differences between training data sets and target network cannot be ignored. In this paper, we use histogram and self-similarity matrix to express these feature differences and keep the traffic features in use at the same time.This method could learn from anomaly network samples and detect real network traffic with feature drift, zoom, and other variants.","PeriodicalId":174382,"journal":{"name":"Proceedings of the 1st International Conference on Information Science and Systems","volume":"110 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-04-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Network Traffic Detection Based on Histogram and Self-similarity Matrix\",\"authors\":\"Penglin Yang, Limin Tao, Haitao Wang\",\"doi\":\"10.1145/3209914.3236336\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper introduces a new network traffic detection method to detect network malicious traffic in different network architectures. In most network traffic data sets, training data and testing data have the same network architecture and traffic features, like the same IP address distribution, the same IP port utilization, etc. But in real network detection, feature differences between training data sets and target network cannot be ignored. In this paper, we use histogram and self-similarity matrix to express these feature differences and keep the traffic features in use at the same time.This method could learn from anomaly network samples and detect real network traffic with feature drift, zoom, and other variants.\",\"PeriodicalId\":174382,\"journal\":{\"name\":\"Proceedings of the 1st International Conference on Information Science and Systems\",\"volume\":\"110 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-04-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 1st International Conference on Information Science and Systems\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3209914.3236336\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 1st International Conference on Information Science and Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3209914.3236336","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

本文介绍了一种新的网络流量检测方法,用于检测不同网络架构下的网络恶意流量。在大多数网络流量数据集中,训练数据和测试数据具有相同的网络架构和流量特征,如相同的IP地址分布,相同的IP端口利用率等。但在实际的网络检测中,训练数据集与目标网络之间的特征差异是不可忽视的。在本文中,我们使用直方图和自相似矩阵来表达这些特征的差异,同时保持使用的交通特征。该方法可以从异常网络样本中学习,检测具有漂移、变焦等特征的真实网络流量。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Network Traffic Detection Based on Histogram and Self-similarity Matrix
This paper introduces a new network traffic detection method to detect network malicious traffic in different network architectures. In most network traffic data sets, training data and testing data have the same network architecture and traffic features, like the same IP address distribution, the same IP port utilization, etc. But in real network detection, feature differences between training data sets and target network cannot be ignored. In this paper, we use histogram and self-similarity matrix to express these feature differences and keep the traffic features in use at the same time.This method could learn from anomaly network samples and detect real network traffic with feature drift, zoom, and other variants.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信