并行性对数据约简的影响

Pavlos Ponos, Stefanos Ougiaroglou, Georgios Evangelidis
{"title":"并行性对数据约简的影响","authors":"Pavlos Ponos, Stefanos Ougiaroglou, Georgios Evangelidis","doi":"10.1145/3351556.3351584","DOIUrl":null,"url":null,"abstract":"In this paper, we investigate the effect of parallelism on two data reduction algorithms that use k-Means clustering in order to find homogeneous clusters in the training set. By homogeneous, we refer to clusters where all instances belong to the same class label. Our approach divides the training set into subsets and applies the data reduction algorithm on each separate subset in parallel. Then, the reduced subsets are merged back to the final reduced set. In our experimental study, we split the datasets into 8, 16, 32 and 64 subsets. The results obtained reveal that parallelism can achieve very low preprocessing costs. Also, when the number of subsets is high, in some datasets the accuracy of k-NN classification is almost equal (if not better) to the one achieved when using the standard execution of the reduction algorithms, with a small loss in the reduction rate.","PeriodicalId":126836,"journal":{"name":"Proceedings of the 9th Balkan Conference on Informatics","volume":"14 4 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-09-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"The Effect of Parallelism on Data Reduction\",\"authors\":\"Pavlos Ponos, Stefanos Ougiaroglou, Georgios Evangelidis\",\"doi\":\"10.1145/3351556.3351584\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, we investigate the effect of parallelism on two data reduction algorithms that use k-Means clustering in order to find homogeneous clusters in the training set. By homogeneous, we refer to clusters where all instances belong to the same class label. Our approach divides the training set into subsets and applies the data reduction algorithm on each separate subset in parallel. Then, the reduced subsets are merged back to the final reduced set. In our experimental study, we split the datasets into 8, 16, 32 and 64 subsets. The results obtained reveal that parallelism can achieve very low preprocessing costs. Also, when the number of subsets is high, in some datasets the accuracy of k-NN classification is almost equal (if not better) to the one achieved when using the standard execution of the reduction algorithms, with a small loss in the reduction rate.\",\"PeriodicalId\":126836,\"journal\":{\"name\":\"Proceedings of the 9th Balkan Conference on Informatics\",\"volume\":\"14 4 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-09-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 9th Balkan Conference on Informatics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3351556.3351584\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 9th Balkan Conference on Informatics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3351556.3351584","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

在本文中,我们研究了并行性对两种数据约简算法的影响,这两种算法使用k-Means聚类来寻找训练集中的同构聚类。通过同构,我们指的是所有实例属于相同类标签的集群。我们的方法将训练集分成多个子集,并在每个单独的子集上并行应用数据约简算法。然后,将这些约简子集合并回最终约简集。在我们的实验研究中,我们将数据集分为8、16、32和64个子集。结果表明,并行化可以实现非常低的预处理成本。此外,当子集数量很高时,在一些数据集中,k-NN分类的精度几乎等于(如果不是更好的话)使用约简算法的标准执行时所获得的精度,而约简率的损失很小。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
The Effect of Parallelism on Data Reduction
In this paper, we investigate the effect of parallelism on two data reduction algorithms that use k-Means clustering in order to find homogeneous clusters in the training set. By homogeneous, we refer to clusters where all instances belong to the same class label. Our approach divides the training set into subsets and applies the data reduction algorithm on each separate subset in parallel. Then, the reduced subsets are merged back to the final reduced set. In our experimental study, we split the datasets into 8, 16, 32 and 64 subsets. The results obtained reveal that parallelism can achieve very low preprocessing costs. Also, when the number of subsets is high, in some datasets the accuracy of k-NN classification is almost equal (if not better) to the one achieved when using the standard execution of the reduction algorithms, with a small loss in the reduction rate.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信