ExEC:弹性可扩展边缘云

Aleksandr Zavodovski, Nitinder Mohan, S. Bayhan, Walter Wong, J. Kangasharju
{"title":"ExEC:弹性可扩展边缘云","authors":"Aleksandr Zavodovski, Nitinder Mohan, S. Bayhan, Walter Wong, J. Kangasharju","doi":"10.1145/3301418.3313941","DOIUrl":null,"url":null,"abstract":"Edge computing (EC) extends the centralized cloud computing paradigm by bringing computation into close proximity to the end-users, to the edge of the network, and is a key enabler for applications requiring low latency such as augmented reality or content delivery. To make EC pervasive, the following challenges must be tackled: how to satisfy the growing demand for edge computing facilities, how to discover the nearby edge servers, and how to securely access them? In this paper, we present ExEC, an open framework where edge providers can offer their capacity and be discovered by application providers and end-users. ExEC aims at the unification of interaction between edge and cloud providers so that cloud providers can utilize services of third-party edge providers, and any willing entity can easily become an edge provider. In ExEC, the unfolding of initially cloud-deployed application towards edge happens without administrative intervention, since ExEC discovers available edge providers on the fly and monitors incoming end-user traffic, determining the near-optimal placement of edge services. ExEC is a set of loosely coupled components and common practices, allowing for custom implementations needed to embrace the diverse needs of specific EC scenarios. ExEC leverages only existing protocols and requires no modifications to the deployed infrastructure. Using real-world topology data and experiments on cloud platforms, we demonstrate the feasibility of ExEC and present results on its expected performance.","PeriodicalId":131097,"journal":{"name":"Proceedings of the 2nd International Workshop on Edge Systems, Analytics and Networking","volume":"75 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-03-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"10","resultStr":"{\"title\":\"ExEC: Elastic Extensible Edge Cloud\",\"authors\":\"Aleksandr Zavodovski, Nitinder Mohan, S. Bayhan, Walter Wong, J. Kangasharju\",\"doi\":\"10.1145/3301418.3313941\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Edge computing (EC) extends the centralized cloud computing paradigm by bringing computation into close proximity to the end-users, to the edge of the network, and is a key enabler for applications requiring low latency such as augmented reality or content delivery. To make EC pervasive, the following challenges must be tackled: how to satisfy the growing demand for edge computing facilities, how to discover the nearby edge servers, and how to securely access them? In this paper, we present ExEC, an open framework where edge providers can offer their capacity and be discovered by application providers and end-users. ExEC aims at the unification of interaction between edge and cloud providers so that cloud providers can utilize services of third-party edge providers, and any willing entity can easily become an edge provider. In ExEC, the unfolding of initially cloud-deployed application towards edge happens without administrative intervention, since ExEC discovers available edge providers on the fly and monitors incoming end-user traffic, determining the near-optimal placement of edge services. ExEC is a set of loosely coupled components and common practices, allowing for custom implementations needed to embrace the diverse needs of specific EC scenarios. ExEC leverages only existing protocols and requires no modifications to the deployed infrastructure. Using real-world topology data and experiments on cloud platforms, we demonstrate the feasibility of ExEC and present results on its expected performance.\",\"PeriodicalId\":131097,\"journal\":{\"name\":\"Proceedings of the 2nd International Workshop on Edge Systems, Analytics and Networking\",\"volume\":\"75 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-03-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"10\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 2nd International Workshop on Edge Systems, Analytics and Networking\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3301418.3313941\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 2nd International Workshop on Edge Systems, Analytics and Networking","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3301418.3313941","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 10

摘要

边缘计算(EC)扩展了集中式云计算范例,使计算更接近最终用户和网络边缘,并且是需要低延迟的应用程序(如增强现实或内容交付)的关键推动因素。要使电子商务普及,必须解决以下挑战:如何满足对边缘计算设施日益增长的需求,如何发现附近的边缘服务器,以及如何安全地访问它们?在本文中,我们介绍了ExEC,这是一个开放框架,边缘提供商可以在其中提供其容量,并被应用程序提供商和最终用户发现。ExEC旨在统一边缘和云提供商之间的交互,使云提供商可以利用第三方边缘提供商的服务,任何愿意的实体都可以轻松成为边缘提供商。在ExEC中,最初的云部署应用程序向边缘的展开是在没有管理干预的情况下进行的,因为ExEC可以动态地发现可用的边缘提供商,并监控传入的最终用户流量,确定边缘服务的近乎最佳的位置。ExEC是一组松散耦合的组件和常用实践,允许定制实现以满足特定EC场景的不同需求。ExEC仅利用现有协议,不需要修改已部署的基础设施。利用实际拓扑数据和云平台上的实验,我们证明了ExEC的可行性,并给出了其预期性能的结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
ExEC: Elastic Extensible Edge Cloud
Edge computing (EC) extends the centralized cloud computing paradigm by bringing computation into close proximity to the end-users, to the edge of the network, and is a key enabler for applications requiring low latency such as augmented reality or content delivery. To make EC pervasive, the following challenges must be tackled: how to satisfy the growing demand for edge computing facilities, how to discover the nearby edge servers, and how to securely access them? In this paper, we present ExEC, an open framework where edge providers can offer their capacity and be discovered by application providers and end-users. ExEC aims at the unification of interaction between edge and cloud providers so that cloud providers can utilize services of third-party edge providers, and any willing entity can easily become an edge provider. In ExEC, the unfolding of initially cloud-deployed application towards edge happens without administrative intervention, since ExEC discovers available edge providers on the fly and monitors incoming end-user traffic, determining the near-optimal placement of edge services. ExEC is a set of loosely coupled components and common practices, allowing for custom implementations needed to embrace the diverse needs of specific EC scenarios. ExEC leverages only existing protocols and requires no modifications to the deployed infrastructure. Using real-world topology data and experiments on cloud platforms, we demonstrate the feasibility of ExEC and present results on its expected performance.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信