基于超宽带的环境保护无线机会网络

R. Giuliano, F. Mazzenga, M. Petracca, Remo Pomposini
{"title":"基于超宽带的环境保护无线机会网络","authors":"R. Giuliano, F. Mazzenga, M. Petracca, Remo Pomposini","doi":"10.1109/WETICE.2010.36","DOIUrl":null,"url":null,"abstract":"In last years, research on developing sensing devices allows new applications for preserving the environment. A typical application foresees to collect data through sensors deployed in the desired area. We proposed to use Ultrawideband (UWB) technology to provide connectivity among sensors enabling the collecting site (the sink) to store environmental parameters. When necessary those parameters are transmitted to the remote monitoring site. The main problems of sensor network is from one side to have a large number of nodes to guarantee a high connectivity level and on the other side not to have a harmful interference on licensed primary users (PUs), with which UWBs share the same bandwidth. In this paper, we propose a deployment strategy for sensors in an open outdoor area. The methodology takes into account both connectivity and coexistence issues envisaged in the deployment phase. Results show that a certain connectivity level can be reached depending on the number of sensors in the area and on propagation conditions. Moreover, an analysis on coexistence between UWBs and PUs is performed depending on the number of PUs in the same area to be preserved and the bit rate required by the application.","PeriodicalId":426248,"journal":{"name":"2010 19th IEEE International Workshops on Enabling Technologies: Infrastructures for Collaborative Enterprises","volume":"55 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2010-06-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Wireless Opportunistic Network Based on UWB for Preserving Environment\",\"authors\":\"R. Giuliano, F. Mazzenga, M. Petracca, Remo Pomposini\",\"doi\":\"10.1109/WETICE.2010.36\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In last years, research on developing sensing devices allows new applications for preserving the environment. A typical application foresees to collect data through sensors deployed in the desired area. We proposed to use Ultrawideband (UWB) technology to provide connectivity among sensors enabling the collecting site (the sink) to store environmental parameters. When necessary those parameters are transmitted to the remote monitoring site. The main problems of sensor network is from one side to have a large number of nodes to guarantee a high connectivity level and on the other side not to have a harmful interference on licensed primary users (PUs), with which UWBs share the same bandwidth. In this paper, we propose a deployment strategy for sensors in an open outdoor area. The methodology takes into account both connectivity and coexistence issues envisaged in the deployment phase. Results show that a certain connectivity level can be reached depending on the number of sensors in the area and on propagation conditions. Moreover, an analysis on coexistence between UWBs and PUs is performed depending on the number of PUs in the same area to be preserved and the bit rate required by the application.\",\"PeriodicalId\":426248,\"journal\":{\"name\":\"2010 19th IEEE International Workshops on Enabling Technologies: Infrastructures for Collaborative Enterprises\",\"volume\":\"55 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2010-06-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2010 19th IEEE International Workshops on Enabling Technologies: Infrastructures for Collaborative Enterprises\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/WETICE.2010.36\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2010 19th IEEE International Workshops on Enabling Technologies: Infrastructures for Collaborative Enterprises","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/WETICE.2010.36","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

在过去的几年里,研究开发传感设备为保护环境提供了新的应用。典型的应用程序预期通过部署在所需区域的传感器收集数据。我们建议使用超宽带(UWB)技术在传感器之间提供连接,使收集点(水槽)能够存储环境参数。必要时,将这些参数传送到远程监控站点。传感器网络的主要问题是一方面要有大量的节点来保证高的连接水平,另一方面要避免对与uwb共享相同带宽的授权主用户(pu)产生有害干扰。在本文中,我们提出了一种传感器在室外开阔区域的部署策略。该方法考虑了部署阶段设想的连接性和共存问题。结果表明,根据区域内传感器的数量和传播条件,可以达到一定的连通性水平。此外,根据需要保留的同一区域内的pu数量和应用所需的比特率,对uwb和pu之间的共存进行了分析。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Wireless Opportunistic Network Based on UWB for Preserving Environment
In last years, research on developing sensing devices allows new applications for preserving the environment. A typical application foresees to collect data through sensors deployed in the desired area. We proposed to use Ultrawideband (UWB) technology to provide connectivity among sensors enabling the collecting site (the sink) to store environmental parameters. When necessary those parameters are transmitted to the remote monitoring site. The main problems of sensor network is from one side to have a large number of nodes to guarantee a high connectivity level and on the other side not to have a harmful interference on licensed primary users (PUs), with which UWBs share the same bandwidth. In this paper, we propose a deployment strategy for sensors in an open outdoor area. The methodology takes into account both connectivity and coexistence issues envisaged in the deployment phase. Results show that a certain connectivity level can be reached depending on the number of sensors in the area and on propagation conditions. Moreover, an analysis on coexistence between UWBs and PUs is performed depending on the number of PUs in the same area to be preserved and the bit rate required by the application.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信