{"title":"β-磷酸三钙颗粒增强聚l -丙交酯复合材料的实验与分析表征","authors":"Satoshi Kobayashi, Kazuki Sakamoto","doi":"10.1299/JSMEA.49.314","DOIUrl":null,"url":null,"abstract":"Bioactive ceramics, β-tricalcium phosphate (β-TCP), particles reinforced bioabsorbable plastics poly-L lactide (PLLA) composites have been expected to apply for the fracture fixations which have more biocompatibility than monolithic PLLA. In this study, β-TCP/PLLA composites containing three different β-TCP contents (4.8, 9.5, 14.3wt%) were prepared by injection molding. The results of bending tests show bending strength decreases with increasing β-TCP contents. On the other hand, bending modulus increases with increasing β-TCP contents. After immersion tests in PBS at 37°C up to 8 weeks, the mechanical properties were hardly degraded in all specimens. The results of fracture surface observation by scanning electron microscopy indicated that microscopic damage such as debonding between β-TCP and PLLA initiates at β-TCP agglomeration and grows with increasing loading. Analytical predictions of the relationship between stress and strain based on micromechanics considering the progress of debonding between β-TCP and PLLA were in good agreement with experimental results.","PeriodicalId":170519,"journal":{"name":"Jsme International Journal Series A-solid Mechanics and Material Engineering","volume":"4 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2006-07-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"11","resultStr":"{\"title\":\"Experimental and Analytical Characterization of β-Tricalcium Phosphate Particle Reinforced Poly-L-Lactide Composites\",\"authors\":\"Satoshi Kobayashi, Kazuki Sakamoto\",\"doi\":\"10.1299/JSMEA.49.314\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Bioactive ceramics, β-tricalcium phosphate (β-TCP), particles reinforced bioabsorbable plastics poly-L lactide (PLLA) composites have been expected to apply for the fracture fixations which have more biocompatibility than monolithic PLLA. In this study, β-TCP/PLLA composites containing three different β-TCP contents (4.8, 9.5, 14.3wt%) were prepared by injection molding. The results of bending tests show bending strength decreases with increasing β-TCP contents. On the other hand, bending modulus increases with increasing β-TCP contents. After immersion tests in PBS at 37°C up to 8 weeks, the mechanical properties were hardly degraded in all specimens. The results of fracture surface observation by scanning electron microscopy indicated that microscopic damage such as debonding between β-TCP and PLLA initiates at β-TCP agglomeration and grows with increasing loading. Analytical predictions of the relationship between stress and strain based on micromechanics considering the progress of debonding between β-TCP and PLLA were in good agreement with experimental results.\",\"PeriodicalId\":170519,\"journal\":{\"name\":\"Jsme International Journal Series A-solid Mechanics and Material Engineering\",\"volume\":\"4 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2006-07-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"11\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Jsme International Journal Series A-solid Mechanics and Material Engineering\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1299/JSMEA.49.314\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Jsme International Journal Series A-solid Mechanics and Material Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1299/JSMEA.49.314","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Experimental and Analytical Characterization of β-Tricalcium Phosphate Particle Reinforced Poly-L-Lactide Composites
Bioactive ceramics, β-tricalcium phosphate (β-TCP), particles reinforced bioabsorbable plastics poly-L lactide (PLLA) composites have been expected to apply for the fracture fixations which have more biocompatibility than monolithic PLLA. In this study, β-TCP/PLLA composites containing three different β-TCP contents (4.8, 9.5, 14.3wt%) were prepared by injection molding. The results of bending tests show bending strength decreases with increasing β-TCP contents. On the other hand, bending modulus increases with increasing β-TCP contents. After immersion tests in PBS at 37°C up to 8 weeks, the mechanical properties were hardly degraded in all specimens. The results of fracture surface observation by scanning electron microscopy indicated that microscopic damage such as debonding between β-TCP and PLLA initiates at β-TCP agglomeration and grows with increasing loading. Analytical predictions of the relationship between stress and strain based on micromechanics considering the progress of debonding between β-TCP and PLLA were in good agreement with experimental results.