海上风力涡轮机塔架和过渡件保护涂层的力学特性

I. López, Pak Sing Leung, F. Inam, Clare Till, Andreas Paulsen
{"title":"海上风力涡轮机塔架和过渡件保护涂层的力学特性","authors":"I. López, Pak Sing Leung, F. Inam, Clare Till, Andreas Paulsen","doi":"10.1109/ICSAE.2016.7810207","DOIUrl":null,"url":null,"abstract":"Marine coatings develop residual stresses in all stages of their lifetime; excessive residual stresses affect adhesion and can compromise the integrity of both the coating system and substrate. The mechanical properties of three epoxy-based paint systems for offshore wind turbine towers and transition pieces were determined by dynamic mechanical analysis in 3-point bending mode. The coatings were airless sprayed onto steel substrates and cured. A mathematical model using composite beam stress analysis was developed to determine the Young's modulus of the coatings. The results show that the mechanical properties of the coatings depend on the film thickness. The composite modulus and Young's modulus of the coatings decrease when the coating thickness increases. Understanding the mechanical properties of marine coatings, and the factors which influence them, could lead to further improvements in the coating and corrosion protection of offshore structures in general.","PeriodicalId":214121,"journal":{"name":"2016 International Conference for Students on Applied Engineering (ICSAE)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Mechanical characterization of protective coatings for offshore wind turbine towers and transition pieces\",\"authors\":\"I. López, Pak Sing Leung, F. Inam, Clare Till, Andreas Paulsen\",\"doi\":\"10.1109/ICSAE.2016.7810207\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Marine coatings develop residual stresses in all stages of their lifetime; excessive residual stresses affect adhesion and can compromise the integrity of both the coating system and substrate. The mechanical properties of three epoxy-based paint systems for offshore wind turbine towers and transition pieces were determined by dynamic mechanical analysis in 3-point bending mode. The coatings were airless sprayed onto steel substrates and cured. A mathematical model using composite beam stress analysis was developed to determine the Young's modulus of the coatings. The results show that the mechanical properties of the coatings depend on the film thickness. The composite modulus and Young's modulus of the coatings decrease when the coating thickness increases. Understanding the mechanical properties of marine coatings, and the factors which influence them, could lead to further improvements in the coating and corrosion protection of offshore structures in general.\",\"PeriodicalId\":214121,\"journal\":{\"name\":\"2016 International Conference for Students on Applied Engineering (ICSAE)\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2016-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2016 International Conference for Students on Applied Engineering (ICSAE)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICSAE.2016.7810207\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 International Conference for Students on Applied Engineering (ICSAE)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICSAE.2016.7810207","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

船舶涂料在其使用寿命的各个阶段都会产生残余应力;过量的残余应力会影响附着力,并可能损害涂层系统和基材的完整性。通过三点弯曲模式下的动态力学分析,确定了三种用于海上风力发电机组塔架和过渡件的环氧基涂料体系的力学性能。将涂层无气喷涂到钢基体上并固化。建立了复合梁应力分析的数学模型来确定涂层的杨氏模量。结果表明,涂层的力学性能与膜厚有关。涂层的复合模量和杨氏模量随涂层厚度的增加而减小。了解海洋涂层的机械性能及其影响因素,可以进一步改善海洋结构的涂层和腐蚀防护。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Mechanical characterization of protective coatings for offshore wind turbine towers and transition pieces
Marine coatings develop residual stresses in all stages of their lifetime; excessive residual stresses affect adhesion and can compromise the integrity of both the coating system and substrate. The mechanical properties of three epoxy-based paint systems for offshore wind turbine towers and transition pieces were determined by dynamic mechanical analysis in 3-point bending mode. The coatings were airless sprayed onto steel substrates and cured. A mathematical model using composite beam stress analysis was developed to determine the Young's modulus of the coatings. The results show that the mechanical properties of the coatings depend on the film thickness. The composite modulus and Young's modulus of the coatings decrease when the coating thickness increases. Understanding the mechanical properties of marine coatings, and the factors which influence them, could lead to further improvements in the coating and corrosion protection of offshore structures in general.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信