{"title":"克服光学多层感知器的不准确性","authors":"P. Moerland, E. Fiesler, I. Saxena","doi":"10.1109/ISNFS.1996.603821","DOIUrl":null,"url":null,"abstract":"All-optical multilayer perceptrons differ in various ways from the ideal neural network model. Examples are the use of non-ideal activation functions which are truncated, asymmetric, and have a non-standard gain, restriction of the network parameters to non-negative values, and the use of limited accuracy for the weights. In this paper an adaptation of the backpropagation learning rule is presented that compensates for these three non-idealities. The good performance of this learning rule is illustrated by a series of experiments. This algorithm enables the implementation of all-optical multilayer perceptrons where learning occurs under control of a computer.","PeriodicalId":187481,"journal":{"name":"1st International Symposium on Neuro-Fuzzy Systems, AT '96. Conference Report","volume":"96 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1996-08-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Overcoming inaccuracies in optical multilayer perceptrons\",\"authors\":\"P. Moerland, E. Fiesler, I. Saxena\",\"doi\":\"10.1109/ISNFS.1996.603821\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"All-optical multilayer perceptrons differ in various ways from the ideal neural network model. Examples are the use of non-ideal activation functions which are truncated, asymmetric, and have a non-standard gain, restriction of the network parameters to non-negative values, and the use of limited accuracy for the weights. In this paper an adaptation of the backpropagation learning rule is presented that compensates for these three non-idealities. The good performance of this learning rule is illustrated by a series of experiments. This algorithm enables the implementation of all-optical multilayer perceptrons where learning occurs under control of a computer.\",\"PeriodicalId\":187481,\"journal\":{\"name\":\"1st International Symposium on Neuro-Fuzzy Systems, AT '96. Conference Report\",\"volume\":\"96 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1996-08-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"1st International Symposium on Neuro-Fuzzy Systems, AT '96. Conference Report\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ISNFS.1996.603821\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"1st International Symposium on Neuro-Fuzzy Systems, AT '96. Conference Report","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISNFS.1996.603821","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Overcoming inaccuracies in optical multilayer perceptrons
All-optical multilayer perceptrons differ in various ways from the ideal neural network model. Examples are the use of non-ideal activation functions which are truncated, asymmetric, and have a non-standard gain, restriction of the network parameters to non-negative values, and the use of limited accuracy for the weights. In this paper an adaptation of the backpropagation learning rule is presented that compensates for these three non-idealities. The good performance of this learning rule is illustrated by a series of experiments. This algorithm enables the implementation of all-optical multilayer perceptrons where learning occurs under control of a computer.