{"title":"生物医学通信短距离无线链路预算的电磁计算","authors":"Ilkyu Kim","doi":"10.5772/INTECHOPEN.76141","DOIUrl":null,"url":null,"abstract":"The biomedical monitoring and imaging system requires data and power transmission through short-range communication, and the interference between large antennas placed within near-field region becomes the important consideration in designing an entire system. For the short-range communication, the electromagnetic computation becomes more complex, which requires huge computational resources. The efficient numerical methods that can be used in short-range communication are (1) Friis formula with correction term and (2) integral coupling formula. Both formulas are similar in an aspect that far-field gain pattern is used to calculate the link budget in a short range. The range of the communication link between two antennas can be defined as reactive near- field, radiating near-field including Fresnel region, a far-field region in the order of nearest distance. Friis formula with correction term can be useful for the simple on-axis antenna displacement in Fresnel region. The integral coupling formula is flexible to compute the mutual coupling of diverse antenna geometries within an entire radiating near-field and a far-field region. Those two methods are evaluated using several exam-ples of short-range communication and interference, and indoor measurement evalu- ates the validity of the calculated results.","PeriodicalId":306073,"journal":{"name":"Emerging Microwave Technologies in Industrial, Agricultural, Medical and Food Processing","volume":"4 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-07-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Electromagnetic Computation of the Short-range Wireless Linkbuget for Biomedical Communication\",\"authors\":\"Ilkyu Kim\",\"doi\":\"10.5772/INTECHOPEN.76141\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The biomedical monitoring and imaging system requires data and power transmission through short-range communication, and the interference between large antennas placed within near-field region becomes the important consideration in designing an entire system. For the short-range communication, the electromagnetic computation becomes more complex, which requires huge computational resources. The efficient numerical methods that can be used in short-range communication are (1) Friis formula with correction term and (2) integral coupling formula. Both formulas are similar in an aspect that far-field gain pattern is used to calculate the link budget in a short range. The range of the communication link between two antennas can be defined as reactive near- field, radiating near-field including Fresnel region, a far-field region in the order of nearest distance. Friis formula with correction term can be useful for the simple on-axis antenna displacement in Fresnel region. The integral coupling formula is flexible to compute the mutual coupling of diverse antenna geometries within an entire radiating near-field and a far-field region. Those two methods are evaluated using several exam-ples of short-range communication and interference, and indoor measurement evalu- ates the validity of the calculated results.\",\"PeriodicalId\":306073,\"journal\":{\"name\":\"Emerging Microwave Technologies in Industrial, Agricultural, Medical and Food Processing\",\"volume\":\"4 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-07-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Emerging Microwave Technologies in Industrial, Agricultural, Medical and Food Processing\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.5772/INTECHOPEN.76141\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Emerging Microwave Technologies in Industrial, Agricultural, Medical and Food Processing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5772/INTECHOPEN.76141","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Electromagnetic Computation of the Short-range Wireless Linkbuget for Biomedical Communication
The biomedical monitoring and imaging system requires data and power transmission through short-range communication, and the interference between large antennas placed within near-field region becomes the important consideration in designing an entire system. For the short-range communication, the electromagnetic computation becomes more complex, which requires huge computational resources. The efficient numerical methods that can be used in short-range communication are (1) Friis formula with correction term and (2) integral coupling formula. Both formulas are similar in an aspect that far-field gain pattern is used to calculate the link budget in a short range. The range of the communication link between two antennas can be defined as reactive near- field, radiating near-field including Fresnel region, a far-field region in the order of nearest distance. Friis formula with correction term can be useful for the simple on-axis antenna displacement in Fresnel region. The integral coupling formula is flexible to compute the mutual coupling of diverse antenna geometries within an entire radiating near-field and a far-field region. Those two methods are evaluated using several exam-ples of short-range communication and interference, and indoor measurement evalu- ates the validity of the calculated results.