{"title":"用于配准和质量检测算法的乳房x光片MST分割的自动调整","authors":"M. Bajger, Fei Ma, M. Bottema","doi":"10.1109/DICTA.2009.72","DOIUrl":null,"url":null,"abstract":"A technique utilizing an entropy measure is developed for automatically tuning the segmentation of screening mammograms by minimum spanning trees (MST). The lack of such technique has been a major obstacle in previous work to segment mammograms for registration and applying mass detection algorithms. The proposed method is tested on two sets of mammograms: a set of 55 mammograms chosen from a publicly available Mini-MIAS database, and a set of 37 mammograms selected from a local database. The method performance is evaluated in conjunction with three different preprocessing filters: gaussian, anisotropic and neutrosophic. Results show that the automatic tuning has the potential to produce state-of-the art segmentation of mass-like objects in mammograms. The neutrosophic filtering provided the best performance.","PeriodicalId":277395,"journal":{"name":"2009 Digital Image Computing: Techniques and Applications","volume":"73 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2009-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"17","resultStr":"{\"title\":\"Automatic Tuning of MST Segmentation of Mammograms for Registration and Mass Detection Algorithms\",\"authors\":\"M. Bajger, Fei Ma, M. Bottema\",\"doi\":\"10.1109/DICTA.2009.72\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A technique utilizing an entropy measure is developed for automatically tuning the segmentation of screening mammograms by minimum spanning trees (MST). The lack of such technique has been a major obstacle in previous work to segment mammograms for registration and applying mass detection algorithms. The proposed method is tested on two sets of mammograms: a set of 55 mammograms chosen from a publicly available Mini-MIAS database, and a set of 37 mammograms selected from a local database. The method performance is evaluated in conjunction with three different preprocessing filters: gaussian, anisotropic and neutrosophic. Results show that the automatic tuning has the potential to produce state-of-the art segmentation of mass-like objects in mammograms. The neutrosophic filtering provided the best performance.\",\"PeriodicalId\":277395,\"journal\":{\"name\":\"2009 Digital Image Computing: Techniques and Applications\",\"volume\":\"73 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2009-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"17\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2009 Digital Image Computing: Techniques and Applications\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/DICTA.2009.72\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2009 Digital Image Computing: Techniques and Applications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/DICTA.2009.72","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Automatic Tuning of MST Segmentation of Mammograms for Registration and Mass Detection Algorithms
A technique utilizing an entropy measure is developed for automatically tuning the segmentation of screening mammograms by minimum spanning trees (MST). The lack of such technique has been a major obstacle in previous work to segment mammograms for registration and applying mass detection algorithms. The proposed method is tested on two sets of mammograms: a set of 55 mammograms chosen from a publicly available Mini-MIAS database, and a set of 37 mammograms selected from a local database. The method performance is evaluated in conjunction with three different preprocessing filters: gaussian, anisotropic and neutrosophic. Results show that the automatic tuning has the potential to produce state-of-the art segmentation of mass-like objects in mammograms. The neutrosophic filtering provided the best performance.