基于光盘环提取和新的局部SIFT-RUK描述符的视网膜识别系统

Takwa Chihaoui, R. Kachouri, Hejer Jlassi, M. Akil, K. Hamrouni
{"title":"基于光盘环提取和新的局部SIFT-RUK描述符的视网膜识别系统","authors":"Takwa Chihaoui, R. Kachouri, Hejer Jlassi, M. Akil, K. Hamrouni","doi":"10.1515/9783110470383-008","DOIUrl":null,"url":null,"abstract":"Personal recognition based on retina has been an attractive topic of scientific research. A common challenge of retinal identification system is to ensure a high recognition rate while maintaining a low mismatching FMR rate and execution time. In this context, this paper presents a retinal identification system based on a novel local feature description. The proposed system is composed of three stages, firstly we enhance the retinal image and we select a ring around the optical disc as an interest region by using our recently proposed Optical Disc Ring ODR method. Secondly, in order to reduce the mismatching rate and speed up the matching step, we propose in this paper an original alternative local description based on the Remove of Uninformative SIFT Keypoints, that we call SIFT-RUK. Finally, the generalization of Lowe’s matching technique (g2NN test) is employed. Experiments on the VARIA database are done to evaluate the performance of our proposed SIFT-RUK feature-based identification system. We show that we obtain a high performance with 99.74% of identification accuracy rate without any mismatching (0% of False Matching Rate FMR) and with a low matching processing time compared to existing identification systems.","PeriodicalId":356989,"journal":{"name":"Communication and Signal Processing","volume":"30 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Retinal Identification System based on Optical Disc Ring Extraction and New Local SIFT-RUK Descriptor\",\"authors\":\"Takwa Chihaoui, R. Kachouri, Hejer Jlassi, M. Akil, K. Hamrouni\",\"doi\":\"10.1515/9783110470383-008\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Personal recognition based on retina has been an attractive topic of scientific research. A common challenge of retinal identification system is to ensure a high recognition rate while maintaining a low mismatching FMR rate and execution time. In this context, this paper presents a retinal identification system based on a novel local feature description. The proposed system is composed of three stages, firstly we enhance the retinal image and we select a ring around the optical disc as an interest region by using our recently proposed Optical Disc Ring ODR method. Secondly, in order to reduce the mismatching rate and speed up the matching step, we propose in this paper an original alternative local description based on the Remove of Uninformative SIFT Keypoints, that we call SIFT-RUK. Finally, the generalization of Lowe’s matching technique (g2NN test) is employed. Experiments on the VARIA database are done to evaluate the performance of our proposed SIFT-RUK feature-based identification system. We show that we obtain a high performance with 99.74% of identification accuracy rate without any mismatching (0% of False Matching Rate FMR) and with a low matching processing time compared to existing identification systems.\",\"PeriodicalId\":356989,\"journal\":{\"name\":\"Communication and Signal Processing\",\"volume\":\"30 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-07-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Communication and Signal Processing\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1515/9783110470383-008\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Communication and Signal Processing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1515/9783110470383-008","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

基于视网膜的个人识别一直是科学研究的热点。在保证高识别率的同时保持低错配率和低执行时间是视网膜识别系统面临的一个共同挑战。在此背景下,本文提出了一种基于局部特征描述的视网膜识别系统。该系统由三个阶段组成,首先对视网膜图像进行增强,并使用我们最近提出的光盘环ODR方法在光盘周围选择一个环作为兴趣区域;其次,为了降低不匹配率,加快匹配步骤,本文提出了一种基于去除无信息SIFT关键点的原始替代局部描述,我们称之为SIFT- ruk。最后,采用推广的Lowe’s匹配技术(g2NN检验)。在VARIA数据库上进行了实验,以评估我们提出的基于SIFT-RUK特征的识别系统的性能。我们表明,与现有的识别系统相比,我们获得了99.74%的识别准确率,没有任何不匹配(0%的错误匹配率FMR)和较低的匹配处理时间。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Retinal Identification System based on Optical Disc Ring Extraction and New Local SIFT-RUK Descriptor
Personal recognition based on retina has been an attractive topic of scientific research. A common challenge of retinal identification system is to ensure a high recognition rate while maintaining a low mismatching FMR rate and execution time. In this context, this paper presents a retinal identification system based on a novel local feature description. The proposed system is composed of three stages, firstly we enhance the retinal image and we select a ring around the optical disc as an interest region by using our recently proposed Optical Disc Ring ODR method. Secondly, in order to reduce the mismatching rate and speed up the matching step, we propose in this paper an original alternative local description based on the Remove of Uninformative SIFT Keypoints, that we call SIFT-RUK. Finally, the generalization of Lowe’s matching technique (g2NN test) is employed. Experiments on the VARIA database are done to evaluate the performance of our proposed SIFT-RUK feature-based identification system. We show that we obtain a high performance with 99.74% of identification accuracy rate without any mismatching (0% of False Matching Rate FMR) and with a low matching processing time compared to existing identification systems.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信