基于遗传算法训练RBF神经网络的速度控制研究

Min Ke, J. Ying
{"title":"基于遗传算法训练RBF神经网络的速度控制研究","authors":"Min Ke, J. Ying","doi":"10.1109/KAM.2009.214","DOIUrl":null,"url":null,"abstract":"Ram velocity tracking control is an important process in injection molding control. Due to the nonlinearity of the injection system and the fluctuation of the system parameters during the process, traditional PID controller can't satisfy the requirement of precision injection. A method of utilizing RBF neural network to adjust PID control parameters is presented, which conquers the deficiency of traditional PID controller. Genetic algorithm is used to optimize the centers and widths of hidden layer and the weights between hidden layer and output layer of RBF neural network. Gradient descent method is used to adjust the PID controller parameters. Simulations are provided to evaluate the performance of the proposed injection velocity control system.","PeriodicalId":192986,"journal":{"name":"2009 Second International Symposium on Knowledge Acquisition and Modeling","volume":"21 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2009-11-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Research of Velocity Control Based on Genetic Algorithm Training RBF Neural Network\",\"authors\":\"Min Ke, J. Ying\",\"doi\":\"10.1109/KAM.2009.214\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Ram velocity tracking control is an important process in injection molding control. Due to the nonlinearity of the injection system and the fluctuation of the system parameters during the process, traditional PID controller can't satisfy the requirement of precision injection. A method of utilizing RBF neural network to adjust PID control parameters is presented, which conquers the deficiency of traditional PID controller. Genetic algorithm is used to optimize the centers and widths of hidden layer and the weights between hidden layer and output layer of RBF neural network. Gradient descent method is used to adjust the PID controller parameters. Simulations are provided to evaluate the performance of the proposed injection velocity control system.\",\"PeriodicalId\":192986,\"journal\":{\"name\":\"2009 Second International Symposium on Knowledge Acquisition and Modeling\",\"volume\":\"21 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2009-11-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2009 Second International Symposium on Knowledge Acquisition and Modeling\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/KAM.2009.214\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2009 Second International Symposium on Knowledge Acquisition and Modeling","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/KAM.2009.214","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

滑块速度跟踪控制是注塑成型控制中的一个重要环节。由于喷射系统的非线性和过程中系统参数的波动,传统的PID控制器已不能满足精密喷射的要求。提出了一种利用RBF神经网络对PID控制参数进行自整定的方法,克服了传统PID控制器的不足。利用遗传算法优化RBF神经网络的隐层中心、隐层宽度以及隐层与输出层之间的权值。采用梯度下降法对PID控制器参数进行调整。仿真结果验证了所提出的喷射速度控制系统的性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Research of Velocity Control Based on Genetic Algorithm Training RBF Neural Network
Ram velocity tracking control is an important process in injection molding control. Due to the nonlinearity of the injection system and the fluctuation of the system parameters during the process, traditional PID controller can't satisfy the requirement of precision injection. A method of utilizing RBF neural network to adjust PID control parameters is presented, which conquers the deficiency of traditional PID controller. Genetic algorithm is used to optimize the centers and widths of hidden layer and the weights between hidden layer and output layer of RBF neural network. Gradient descent method is used to adjust the PID controller parameters. Simulations are provided to evaluate the performance of the proposed injection velocity control system.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信