{"title":"变压器:基于构造神经网络的图像分类","authors":"Yangrui Cheng, Fuqiang Xie, Yongzhou Li, G. Zhao","doi":"10.1109/ICCECE58074.2023.10135505","DOIUrl":null,"url":null,"abstract":"To solve the problem of excessive calculation caused by inputting images with a large size when using ViT network structure to implement image classification tasks, this paper proposes a ViT network model based on a convolutional neural network (CNN). Its network structure first uses CNN to extract a low-resolution feature map and then uses ViT structure to process the low-resolution feature map. At this time, the computational pressure is greatly relieved. In this paper, the author uses VGG16 as the Backbone and ViT network structure to build the VGG16-TE network and implements an image classification task on the ImageNet-1k dataset. Compared with the VGG16 model, the accuracy of Top1 and Top5 image classification is improved by 2.5 points and 1.7 points respectively. Besides, this paper builds a ResNet34-TE network with ResNet34 as the Backbone and ViT network and implements an image classification task on the ImageNet-1k dataset. Compared with the ResNet34 model, the accuracy of Top1 and Top5 image classification is improved by 2.1 points and 1.2 points respectively. VGG16-TE and ResNet34-TE parameters decrease by 68M and 61.5M compared with that of the ViT-Base model.","PeriodicalId":120030,"journal":{"name":"2023 3rd International Conference on Consumer Electronics and Computer Engineering (ICCECE)","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2023-01-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Transformer: Image Classification Based on Constitutional Neural Networks\",\"authors\":\"Yangrui Cheng, Fuqiang Xie, Yongzhou Li, G. Zhao\",\"doi\":\"10.1109/ICCECE58074.2023.10135505\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"To solve the problem of excessive calculation caused by inputting images with a large size when using ViT network structure to implement image classification tasks, this paper proposes a ViT network model based on a convolutional neural network (CNN). Its network structure first uses CNN to extract a low-resolution feature map and then uses ViT structure to process the low-resolution feature map. At this time, the computational pressure is greatly relieved. In this paper, the author uses VGG16 as the Backbone and ViT network structure to build the VGG16-TE network and implements an image classification task on the ImageNet-1k dataset. Compared with the VGG16 model, the accuracy of Top1 and Top5 image classification is improved by 2.5 points and 1.7 points respectively. Besides, this paper builds a ResNet34-TE network with ResNet34 as the Backbone and ViT network and implements an image classification task on the ImageNet-1k dataset. Compared with the ResNet34 model, the accuracy of Top1 and Top5 image classification is improved by 2.1 points and 1.2 points respectively. VGG16-TE and ResNet34-TE parameters decrease by 68M and 61.5M compared with that of the ViT-Base model.\",\"PeriodicalId\":120030,\"journal\":{\"name\":\"2023 3rd International Conference on Consumer Electronics and Computer Engineering (ICCECE)\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-01-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2023 3rd International Conference on Consumer Electronics and Computer Engineering (ICCECE)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICCECE58074.2023.10135505\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2023 3rd International Conference on Consumer Electronics and Computer Engineering (ICCECE)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICCECE58074.2023.10135505","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Transformer: Image Classification Based on Constitutional Neural Networks
To solve the problem of excessive calculation caused by inputting images with a large size when using ViT network structure to implement image classification tasks, this paper proposes a ViT network model based on a convolutional neural network (CNN). Its network structure first uses CNN to extract a low-resolution feature map and then uses ViT structure to process the low-resolution feature map. At this time, the computational pressure is greatly relieved. In this paper, the author uses VGG16 as the Backbone and ViT network structure to build the VGG16-TE network and implements an image classification task on the ImageNet-1k dataset. Compared with the VGG16 model, the accuracy of Top1 and Top5 image classification is improved by 2.5 points and 1.7 points respectively. Besides, this paper builds a ResNet34-TE network with ResNet34 as the Backbone and ViT network and implements an image classification task on the ImageNet-1k dataset. Compared with the ResNet34 model, the accuracy of Top1 and Top5 image classification is improved by 2.1 points and 1.2 points respectively. VGG16-TE and ResNet34-TE parameters decrease by 68M and 61.5M compared with that of the ViT-Base model.