利用扩展潜空间分布的CVAE增强雷达HRRP数据

Wenxiang Zhang, Youquan Lin, Long Zhuang, Jie Guo
{"title":"利用扩展潜空间分布的CVAE增强雷达HRRP数据","authors":"Wenxiang Zhang, Youquan Lin, Long Zhuang, Jie Guo","doi":"10.1109/IMCEC51613.2021.9482276","DOIUrl":null,"url":null,"abstract":"In this paper, we propose a variational autoencoder (VAE) based generative model with particular regard to the aspect angle sensitivity of the radar HRRP data of maritime vessels, and conduct high-resolution range profile (HRRP) data augmentation experiments to improve the recognition performance. Specifically, we train the extended conditional Variational auto-encoder (ECVAE) model to reconstruction data, and consider the latent space distribution of the sample as a more general multidimensional posterior Gaussian distribution. Discrete or continuous labels can be input to the model. Design a periodic latent distribution to deal with periodic labels. Use Kullback-Leibler (KL) divergence to evaluate the similarity of the distribution and reconstruct data with the latent space distribution which making the dimension as low as possible. Experiments based on MNIST data and measured vessels HRRP data show that the ECVAE model can augment the data of samples to improve recognition Performance, in especial in the case of a small number of data samples.","PeriodicalId":240400,"journal":{"name":"2021 IEEE 4th Advanced Information Management, Communicates, Electronic and Automation Control Conference (IMCEC)","volume":"94 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-06-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Radar HRRP Data Augmentation Using CVAE with Extended Latent Space Distribution\",\"authors\":\"Wenxiang Zhang, Youquan Lin, Long Zhuang, Jie Guo\",\"doi\":\"10.1109/IMCEC51613.2021.9482276\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, we propose a variational autoencoder (VAE) based generative model with particular regard to the aspect angle sensitivity of the radar HRRP data of maritime vessels, and conduct high-resolution range profile (HRRP) data augmentation experiments to improve the recognition performance. Specifically, we train the extended conditional Variational auto-encoder (ECVAE) model to reconstruction data, and consider the latent space distribution of the sample as a more general multidimensional posterior Gaussian distribution. Discrete or continuous labels can be input to the model. Design a periodic latent distribution to deal with periodic labels. Use Kullback-Leibler (KL) divergence to evaluate the similarity of the distribution and reconstruct data with the latent space distribution which making the dimension as low as possible. Experiments based on MNIST data and measured vessels HRRP data show that the ECVAE model can augment the data of samples to improve recognition Performance, in especial in the case of a small number of data samples.\",\"PeriodicalId\":240400,\"journal\":{\"name\":\"2021 IEEE 4th Advanced Information Management, Communicates, Electronic and Automation Control Conference (IMCEC)\",\"volume\":\"94 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-06-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2021 IEEE 4th Advanced Information Management, Communicates, Electronic and Automation Control Conference (IMCEC)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/IMCEC51613.2021.9482276\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 IEEE 4th Advanced Information Management, Communicates, Electronic and Automation Control Conference (IMCEC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IMCEC51613.2021.9482276","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

本文针对船舶雷达HRRP数据的向角敏感性,提出了一种基于变分自编码器(VAE)的生成模型,并进行了高分辨率距离像(HRRP)数据增强实验,以提高识别性能。具体来说,我们训练扩展条件变分自编码器(ECVAE)模型来重建数据,并将样本的潜在空间分布视为更一般的多维后验高斯分布。离散或连续标签可以输入到模型中。设计一个周期潜在分布来处理周期标签。利用Kullback-Leibler (KL)散度评价分布的相似性,用尽可能低维数的潜在空间分布重构数据。基于MNIST数据和实测血管HRRP数据的实验表明,ECVAE模型可以增强样本数据,提高识别性能,特别是在数据样本数量较少的情况下。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Radar HRRP Data Augmentation Using CVAE with Extended Latent Space Distribution
In this paper, we propose a variational autoencoder (VAE) based generative model with particular regard to the aspect angle sensitivity of the radar HRRP data of maritime vessels, and conduct high-resolution range profile (HRRP) data augmentation experiments to improve the recognition performance. Specifically, we train the extended conditional Variational auto-encoder (ECVAE) model to reconstruction data, and consider the latent space distribution of the sample as a more general multidimensional posterior Gaussian distribution. Discrete or continuous labels can be input to the model. Design a periodic latent distribution to deal with periodic labels. Use Kullback-Leibler (KL) divergence to evaluate the similarity of the distribution and reconstruct data with the latent space distribution which making the dimension as low as possible. Experiments based on MNIST data and measured vessels HRRP data show that the ECVAE model can augment the data of samples to improve recognition Performance, in especial in the case of a small number of data samples.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信