自动标题:一种从可视化中自动生成自然语言描述的方法

Can Liu, Liwenhan Xie, Yun Han, Datong Wei, Xiaoru Yuan
{"title":"自动标题:一种从可视化中自动生成自然语言描述的方法","authors":"Can Liu, Liwenhan Xie, Yun Han, Datong Wei, Xiaoru Yuan","doi":"10.1109/PacificVis48177.2020.1043","DOIUrl":null,"url":null,"abstract":"In this paper, we propose a novel approach to generate captions for visualization charts automatically. In the proposed method, visual marks and visual channels, together with the associated text information in the original charts, are first extracted and identified with a multilayer perceptron classifier. Meanwhile, data information can also be retrieved by parsing visual marks with extracted mapping relationships. Then a 1-D convolutional residual network is employed to analyze the relationship between visual elements, and recognize significant features of the visualization charts, with both data and visual information as input. In the final step, the full description of the visual charts can be generated through a template-based approach. The generated captions can effectively cover the main visual features of the visual charts and support major feature types in commons charts. We further demonstrate the effectiveness of our approach through several cases.","PeriodicalId":322092,"journal":{"name":"2020 IEEE Pacific Visualization Symposium (PacificVis)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"31","resultStr":"{\"title\":\"AutoCaption: An Approach to Generate Natural Language Description from Visualization Automatically\",\"authors\":\"Can Liu, Liwenhan Xie, Yun Han, Datong Wei, Xiaoru Yuan\",\"doi\":\"10.1109/PacificVis48177.2020.1043\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, we propose a novel approach to generate captions for visualization charts automatically. In the proposed method, visual marks and visual channels, together with the associated text information in the original charts, are first extracted and identified with a multilayer perceptron classifier. Meanwhile, data information can also be retrieved by parsing visual marks with extracted mapping relationships. Then a 1-D convolutional residual network is employed to analyze the relationship between visual elements, and recognize significant features of the visualization charts, with both data and visual information as input. In the final step, the full description of the visual charts can be generated through a template-based approach. The generated captions can effectively cover the main visual features of the visual charts and support major feature types in commons charts. We further demonstrate the effectiveness of our approach through several cases.\",\"PeriodicalId\":322092,\"journal\":{\"name\":\"2020 IEEE Pacific Visualization Symposium (PacificVis)\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-06-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"31\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2020 IEEE Pacific Visualization Symposium (PacificVis)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/PacificVis48177.2020.1043\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 IEEE Pacific Visualization Symposium (PacificVis)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/PacificVis48177.2020.1043","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 31

摘要

在本文中,我们提出了一种自动生成可视化图表标题的新方法。在该方法中,首先提取视觉标记和视觉通道以及原始图表中的相关文本信息,并使用多层感知器分类器进行识别。同时,还可以通过对提取的映射关系的可视化标记进行解析来检索数据信息。然后以数据和视觉信息为输入,利用一维卷积残差网络分析视觉元素之间的关系,识别可视化图表的显著特征。在最后一步中,可视图表的完整描述可以通过基于模板的方法生成。生成的标题可以有效地覆盖可视化图表的主要视觉特征,并支持公共图表中的主要特征类型。我们通过几个案例进一步证明了我们的方法的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
AutoCaption: An Approach to Generate Natural Language Description from Visualization Automatically
In this paper, we propose a novel approach to generate captions for visualization charts automatically. In the proposed method, visual marks and visual channels, together with the associated text information in the original charts, are first extracted and identified with a multilayer perceptron classifier. Meanwhile, data information can also be retrieved by parsing visual marks with extracted mapping relationships. Then a 1-D convolutional residual network is employed to analyze the relationship between visual elements, and recognize significant features of the visualization charts, with both data and visual information as input. In the final step, the full description of the visual charts can be generated through a template-based approach. The generated captions can effectively cover the main visual features of the visual charts and support major feature types in commons charts. We further demonstrate the effectiveness of our approach through several cases.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信